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Summary A general framework to analyze microscopic bifurcation and post-bifurcation behavior of elastoplastic, periodic cellular solids is
developed on the basis of a two-scale theory of the updated Lagrangian type. We thus derive the eigenmode problem of microscopic
bifurcation and the orthogonality to be satisfied by the eigenmodes. By use of the framework, then, bifurcation and post-bifurcation analysis
are performed for cell aggregates of an elastoplastic honeycomb subject to in-plane compression. Thus, demonstrating a long-wave
eigenmode of microscopic bifurcation under uniaxial compression, it is shown that the eigenmode causes microscopic buckling to localize
in a cell row perpendicular to the loading axis. It is also shown that under equi-biaxial compression, the flower-like buckling mode having
occurred in a macroscopically stable state changes into an asymmetric, long-wave mode due to the sextuple bifurcation in a
macroscopically unstable state, leading to the localization of microscopic buckling in deltaic areas.

INTRODUCTION

When cellular solids are subject to compression, buckling may occur in cell walls and edges. This kind of buckling,
which is called microscopic buckling, is of interest from a mechanics point of view because of two features: The first is
the complexity of buckling modes, which has been typically observed in hexagonal honeycombs [1, 2]. The second is
the macroscopic localization of microscopic buckling. When metallic and polymer honeycombs were transversely
compressed, microscopic buckling was likely to localize in a cell row and then propagate to the neighboring cell rows,
yet it localized rather broadly under equi-biaxial compression [2]. Such macroscopic localization may be enhanced by
microscopic plastic deformation, since it generally greatly reduces macroscopic stiffness.

In this study, a general framework to analyze microscopic bifurcation and post-bifurcation behavior of elastoplastic,
periodic cellular solids is built on the basis of the updated Lagrangian type of two-scale theory developed in [3]. By use
of the framework, bifurcation and post-bifurcation analysis are performed for cell aggregates of an elastoplastic
honeycomb subject to in-plane compression.

THEORY

We consider an infinite, periodic body 5 that has a unit cell ¥ and is subject to macroscopically uniform stress or
strain. A general framework is then established by employing a two-scale theory of the updated Lagrangian type and by
taking into account the kY-periodicity of microscopic deformation as well as the multiplicity of microscopic bifurcation.
Here, kY indicates a cell aggregate consisting of & unit cells. The framework is generally built without recourse to the
symmetry of microscopic bifurcation in contrast to the previous framework [3]. We thus derive the eigenmode problem
of microscopic bifurcation, Eq. (1), and the orthogonality to be satisfied by the eingenmodes, Eq. (2):
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where ( ) indicates the volume average in kY, [, expresses microscopic stiffness, #"” (r=1, 2, ...,m) denote

eigenmodes, ou, is any kY-periodic velocity field, ( ), represents the differentiation with respect to Cartesian
coordinate x,, and m signifies the degree of multiplicity.

We can show that at the onset of microscopic bifurcation, orthogonality (2) allows the macroscopic increments to
be determined independently of the eigenmodes, resulting in a simple procedure of the elastoplastic post-bifurcation
analysis based on the notion of comparison solids.

ANALYSIS OF HONEYCOMBS

The theory mentioned above was applied to the in-plane buckling analysis of an elastoplastic honeycomb. The
honeycomb was subject to in-plane either uniaxial or equi-biaxial compression. We employed the periodic unit £Y that
consisted of M x N subunits, each of which was the aggregate of 2x2 cells illustrated in Fig. 1. This type of periodic
units are denoted as Y., -
Uniaxial compression

The analysis of uniaxial compression was done by use of the Y, ,, type of periodic units. Then, subsequent to a simple
bifurcation with no dependence on the periodic cell number 2N, a long-wave bifurcation depending on the periodic cell
number 2N occurred in macroscopically unstable states (Fig. 2). The long-wave bifurcation, which occurred earlier
with the increase of 2N, was double, i.e., m =2, because of the freedom of a phase shift. The post-bifurcation



procedure based on Eq. (2), then, allowed steering into a bifurcated
path on which microscopic buckling localized in a cell row
perpendicular to the loading axis.

Equi-biaxial compression

The buckling behavior under equi-biaxial compression was analyzed
by use of the Y,,.,, type of periodic units. Then, as was
demonstrated in [3, 4], a triple bifurcation appeared to cause the
flower-like buckling mode, which was first found in [2].
Subsequently, a long-wave, sextuple bifurcation occurred soon after
initial yielding, if such large periodic units as Y, ,,, Y 5.6 » and so on
were assumed (Fig. 3). This second bifurcation, which turned out to
be asymmetric, induced the localization of microscopic buckling in
deltaic areas (Fig. 4 (b)). The localization in such unnarrow regions
was likely to occur experimentally [2].
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Fig. 2. Macroscopic stress-strain relation under
uniaxial compression.
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Fig. 3. Macroscopic stress-strain relation under
equi-biaxial compression.

Fig. 4. Change in deformation of Y, due to the second bifurcation under equi-biaxial compression.

CONCLUSIONS

On the basis of a two-scale theory of the up-dated Lagrangian type, a general framework was developed to analyze
microscopic bifurcation and post-bifurcation behavior of elastoplastic, periodic cellular solids. The framework was
applied to the in-plane buckling analysis of honeycombs. We thus had the following findings: Subsequent to the
microscopic bifurcation with no dependence on periodic length, the long-wave microscopic bifurcation depending on
periodic length occurred in macroscopically unstable states. In the case of equi-biaxial compression, the flower-like
buckling mode having occurred in a macroscopically stable state changed into an asymmetric, long-wave mode due to
the sextuple bifurcation in a macroscopically unstable state, leading to the localization of microscopic buckling in
deltaic areas.
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