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Summary The numerical solution of quasi-static incremental frictional contadilpros involving discrete versions of two- and three-
dimensional elastic solids or structures is sought with a Second Orderl@uear Complementarity Problem (SOCLCP) formulation.
The Coulomb friction cone is considered without any pyramidal appration. Some illustrative numerical examples are given.

The SOCLP for mulation

In this paper we deal with quasi-static problems in whichtéidimensional geometrically linear elastic structureg/m
establish frictional contact with the surface of rigid aladés. The nonlinearity of the three-dimensional Couloridtién
cone makes impossible the direct use of linear complemgnfarmulations to deal with three-dimensional frictidna
contact problems. In order to overcome this difficulty savé&rmulations use pyramidal approximations of the fdnoti
cone. In this paper we consider the classical three-dimaakCoulomb friction cone without any pyramidal approxima
tion. For a contact candidate node in the three-dimensipeade(Auy, Au,) € R? x R and(ry,r,) € R? x R denote
the vector of incremental displacements and the vector aiftiens, respectively. Here, the subscrip@sndn denote
the two tangential and the normal directions to the obstaattace, respectively. Denoting the coefficient of frintimy
1 > 0, Coulomb’s friction law

prn > el v Aug + prg | Aug | =0, &

can be written as the following linear complementarity déod over two second-order cones [2]

()\naAut> : (,U/I”n,l‘t) = 07 )\n Z HAutHa HTn > Hrt||7 (2)

where)\, € R. The unilateral contact condition can be written as
Auy, —g >0, 11, >0, (Auy,—g)ry =0, 3)

whereg denotes the current distance to the obstaclenteenote the number of contact candidate nodes. The equitibri
equations after a condensation on the contact candidatsraod

KAu=r+f, 4)

whereK € R %37 js the condensed stiffness matrixu € R**" andr € R3"" denote, respectively, the vector of
incremental nodal displacements and the reactions at thiaocandidate nodes afide R*™ denotes the vector of
independent terms that combines effects of applied fomasent gap and condensation process. Conditions (2) — (4),
are equivalent to the followingecond-order cone linear complementarity probS®CLCPH

find (x,y) € R*" x R* such that
y=Mx+q, x€Ks, yeKs, x'y=0, (5)

wherex = (\,, Aug, Auy,),y = (ury, re, ry), M andqg are a matrix and a vector of dimensi¢n® and the second-order
coneks = K1 x R C R with K1 = {(s1,82) € R"" x R?""[s1; > [|so;]|}. Problem (5) can be solved efficiently
by using the recently developed algorithm [1] that combsrasothing and regularization procedures, and is baseceon th
Euclidean Jordan algebra on second-order cones.

Numerical examples

In this section we consider two numerical examples solvethbypresent formulation and algorithm. The first example
is a double layer truss with2 x 12 contact candidate nodes with an horizontal flat obstacle at 0 (Figure 1(b)).
Figure 1(a) illustrates &x 4 truss. The lengths of the members in theandy-directions ar€000.0 mm and3000.0 mm,
respectively, and the distance between the upper and l@yerd is2000.0 mm. The elastic modulus and the cross-
sectional area for each member a65.8 GPa and10000.0 mm?, respectively. The coefficient of friction js = 0.12.
The external loads applied to the nodes of the upper layevaat $tept are~*)f for each interior node (denoted by
o; see Figure 1 (a))y®)f/2 for each edge node (denoted iy and~(¥)f/4 for each corner node (denoted k),
wheref = (0,0,—102.9) kN. The sequence of the load parametef® is 0, 5.00, 4.05, 3.1, 2.15, 1.20, 0.25 for

k = 0,...,6; after an initial compression against the obstacle the deawd forces are progressively alleviated. For
k = 6 Figure 1(b) illustrates the configuration of the truss whiigure 1(c) shows the projection onto thg-plane of the
total displacements of the contact candidate nodes. Therpaif the residual tangential contact displacementseirist
observed in Figure 1(c) .



Figurel. (a) A4 x 4 double layer truss. At the end of the loading process (displacementgiachp000 times): (b) perspective of
the equilibrium configuration of the truss; (c) horizontal projection of fmeth of the contact candidate nodes (double symmetry).

The next example is a well known example in the literatureohsists of a linear elastic body (Young's modulis=
130 GPa, Poisson’s ratiar = 0.2) in a state of plane strain. One half of it occupieflanm x 40 mm square domain
as illustrated in Figure 2 and is discretizedir® bilinear (Q1) finite elements. The right boundary of thatagubelongs
to an axis of symmetry, hence its points are constrained teeroaly in the vertical direction. The nodes of the bottom
segment are submitted to frictional contact conditions€ 1, ¢ = 1,...,33). The left and top boundary segments
are submitted to a monotonic proportional loading that me®f 100 MPa rightward ands0 MPa downward uniform
stresses, respectively. The self-weight is neglected.cohtact stresses are represented in Figure 2 and matclstiitsre
presented in previous works; the tangential reaction stepoint to the right.
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Figure 2. (a) Deformed configuration at an equilibrium state corresponding tchawagd pressure of00 MPa on the left face and
a downward pressure 6) MPa on the upper face (displacements amplifi@d times); (b) Schematic representation of the normal
contact stresse and tangential contact stresses dividegud(a).

Conclusions

The equilibrium states of three- and two-dimensional $tm&s and solids were computed by solving the incremental
guasi-static frictional contact problem formulated as aC&OP. With this formulation no pyramidal approximation of
the Coulomb friction cone is needed. The SOCLCP’s were gdbyea combined smoothing and regularization method.
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