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Summary The numerical solution of quasi-static incremental frictional contact problems involving discrete versions of two- and three-
dimensional elastic solids or structures is sought with a Second Order Cone Linear Complementarity Problem (SOCLCP) formulation.
The Coulomb friction cone is considered without any pyramidal approximation. Some illustrative numerical examples are given.

The SOCLP formulation
In this paper we deal with quasi-static problems in which finite-dimensional geometrically linear elastic structures may
establish frictional contact with the surface of rigid obstacles. The nonlinearity of the three-dimensional Coulomb friction
cone makes impossible the direct use of linear complementarity formulations to deal with three-dimensional frictional
contact problems. In order to overcome this difficulty several formulations use pyramidal approximations of the friction
cone. In this paper we consider the classical three-dimensional Coulomb friction cone without any pyramidal approxima-
tion. For a contact candidate node in the three-dimensionalspace,(∆ut,∆un) ∈ R

2 × R and(rt, rn) ∈ R
2 × R denote

the vector of incremental displacements and the vector of reactions, respectively. Here, the subscriptst andn denote
the two tangential and the normal directions to the obstaclesurface, respectively. Denoting the coefficient of friction by
µ > 0, Coulomb’s friction law

µrn ≥ ‖rt‖, rt · ∆ut + µrn‖∆ut‖ = 0, (1)

can be written as the following linear complementarity condition over two second-order cones [2]

(λn,∆ut) · (µrn, rt) = 0, λn ≥ ‖∆ut‖, µrn ≥ ‖rt‖, (2)

whereλn ∈ R. The unilateral contact condition can be written as

∆un − g ≥ 0, rn ≥ 0, (∆un − g)rn = 0, (3)

whereg denotes the current distance to the obstacle. Letnc denote the number of contact candidate nodes. The equilibrium
equations after a condensation on the contact candidate nodes are

K∆u = r + f , (4)

whereK ∈ R
3n

c

×3n
c

is the condensed stiffness matrix,∆u ∈ R
3n

c

andr ∈ R
3n

c

denote, respectively, the vector of
incremental nodal displacements and the reactions at the contact candidate nodes andf ∈ R

3n
c

denotes the vector of
independent terms that combines effects of applied forces,current gap and condensation process. Conditions (2) – (4),
are equivalent to the followingsecond-order cone linear complementarity problem(SOCLCP)

find (x,y) ∈ R
4n

c

× R
4n

c

such that

y = Mx + q, x ∈ KS , y ∈ KS , xTy = 0, (5)

wherex = (λn,∆ut,∆un), y = (µrn, rt, rn), M andq are a matrix and a vector of dimension4nc and the second-order
coneKS = K1 × R

n
c

+ ⊂ R
3n

c

with K1 = {(s1, s2) ∈ R
n

c

× R
2n

c

|s1i ≥ ‖s2i‖}. Problem (5) can be solved efficiently
by using the recently developed algorithm [1] that combinessmoothing and regularization procedures, and is based on the
Euclidean Jordan algebra on second-order cones.

Numerical examples
In this section we consider two numerical examples solved bythe present formulation and algorithm. The first example
is a double layer truss with12 × 12 contact candidate nodes with an horizontal flat obstacle atz = 0 (Figure 1(b)).
Figure 1(a) illustrates a4×4 truss. The lengths of the members in thex- andy-directions are2000.0 mm and3000.0 mm,
respectively, and the distance between the upper and lower layers is2000.0 mm. The elastic modulus and the cross-
sectional area for each member are205.8 GPa and10000.0 mm2, respectively. The coefficient of friction isµ = 0.12.
The external loads applied to the nodes of the upper layer at load stepk areγ(k)f̂ for each interior node (denoted by
◦; see Figure 1 (a)),γ(k)f̂/2 for each edge node (denoted by•) and γ(k)f̂/4 for each corner node (denoted by⊕),
where f̂ = (0, 0,−102.9) kN. The sequence of the load parametersγ(k) is 0, 5.00, 4.05, 3.1, 2.15, 1.20, 0.25 for
k = 0, . . . , 6; after an initial compression against the obstacle the downward forces are progressively alleviated. For
k = 6 Figure 1(b) illustrates the configuration of the truss whileFigure 1(c) shows the projection onto thexy-plane of the
total displacements of the contact candidate nodes. The pattern of the residual tangential contact displacements is clearly
observed in Figure 1(c) .
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Figure 1. (a) A 4 × 4 double layer truss. At the end of the loading process (displacements amplified 1000 times): (b) perspective of
the equilibrium configuration of the truss; (c) horizontal projection of onefourth of the contact candidate nodes (double symmetry).

The next example is a well known example in the literature. Itconsists of a linear elastic body (Young’s modulusE =
130 GPa, Poisson’s ratioν = 0.2) in a state of plane strain. One half of it occupies a40 mm × 40 mm square domain
as illustrated in Figure 2 and is discretized in512 bilinear (Q1) finite elements. The right boundary of that square belongs
to an axis of symmetry, hence its points are constrained to move only in the vertical direction. The nodes of the bottom
segment are submitted to frictional contact conditions (µi = 1, i = 1, . . . , 33). The left and top boundary segments
are submitted to a monotonic proportional loading that consists of100 MPa rightward and50 MPa downward uniform
stresses, respectively. The self-weight is neglected. Thecontact stresses are represented in Figure 2 and match the results
presented in previous works; the tangential reaction stresses point to the right.
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Figure 2. (a) Deformed configuration at an equilibrium state corresponding to a rightward pressure of100 MPa on the left face and
a downward pressure of50 MPa on the upper face (displacements amplified500 times); (b) Schematic representation of the normal
contact stresses (�) and tangential contact stresses divided byµ (N).

Conclusions
The equilibrium states of three- and two-dimensional structures and solids were computed by solving the incremental
quasi-static frictional contact problem formulated as a SOCLCP. With this formulation no pyramidal approximation of
the Coulomb friction cone is needed. The SOCLCP’s were solved by a combined smoothing and regularization method.
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