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FRICTIONAL SLIDING OF A MULTISLIP SYSTEM
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Summary The brittle/ductile transition in rocks has an essential influence in determining the strain rate in lithospheric plates. With
this motivation we attempt to study the micromechanics of an elastic medium with interfaces whose slip is governed by rate-and-state
friction. As a preliminary analysis we study the stability of the steady-state slip of a finite numberN of parallel interfaces caused by
a constant velocity applied at one edge of the medium. We show that interfacial slip can occur with one or two different slip rates if
the steady-state friction law displays a minimum as for dry friction. Our results suggest that, when active slip on allN interfaces is
unstable, the medium will select a smaller number of interfaces which continue to slide, the others stopping.

INTRODUCTION
The mechanical behaviour of the earth’s lithosphere is broadly described by the combination of a pressure-dependent brit-
tle behaviour and a thermally activated viscoplastic one, called ductile. The brittle behaviour corresponds to the frictional
sliding along preexisting faults and can roughly be modelled by a plastic material with a Drucker-Prager criterion. Con-
cerning the mechanics of Plate tectonics, it has been shown that the brittle behaviour is essential because the brittle/ductile
transition determines the strain rate of the lithospheric plate in relation to the forces equilibrium driving the plate [2]. This
is why we are attempting to understand the micromechanics of such a brittle medium in order to propose homogenized
constitutive models. As a preliminary approach, we study the linear stability of the steady sliding ofN parallel frictional
discontinuities in an elastic body.

THE PROBLEM
We consider a homogeneous elastic medium in mechanical equilibrium of thicknessH, infinite in the horizontal direction
x and divided byN horizontal interfaces along which friction phenomena occur. We consider rate-and-state friction laws
defined by

τ = F (σ, ˙δu, ψ) and ψ̇ = −G(σ, ˙δu, ψ). (1)

Such friction laws relate the shear stressτ to the compressive normal stressσ and the rate of slip˙δu along the interface.
The state of the asperity contacts is modelled by a single state variableψ. It is supposed thatFV > 0,Fψ > 0 andGψ > 0.
The lower boundary is fixed and the upper one moves with a constant horizontal velocityVH . A constant pressureP is
applied on the upper boundary. Assuming the displacement such thatu = u(y, t)ex, it is found that the normal stress is
homogeneous and equal to−P and that the shear stress depends only on the time:τ(t). The boundary value problem,
the stress continuity on each interface and the Hooke’s law give a relation between the displacementu(y, t) in the layeri
(0 6 i 6 N ) and all the displacement jumpsδuj(t) of each interface0 6 j 6 i. Fory = H, the time derivative of this
relation leads to a differential equation for the shear stress

τ̇ = k
(
VH −

∑
N
i=1

˙δui
)
, (2)

wherek = µ/H is a stiffness parameter. Now, regarding the steady-state (τ̇ = 0), the previous equation relates theN slip
rates by ∑

N
i=1Vi = VH . (3)

We have denotedVi = ˙δui the steady-state slip rate on each interface. By the equation (1)2 the state of each interface is a
function of its corresponding slip rateψssi = ψi(Vi;P ). Together with (1)1, it leads toN − 1 equationsτ = F ss(Vi;P )
giving with (3) the nonlinear system to solve to find the steady-state slipsVi. Depending on the properties of the function
F ss, different cases can be envisaged. IfF ss is a monotonic function ofVi we expect a unique slip rate for the interfaces.
If F ss presents an extremum as observed in the case of dry friction [1], two slip ratesV1 andV2 are expected. If there is a
lubrication or a threshold atVi = 0, the interfaces could slip with three different velocities.

MAIN RESULTS OF THE LINEAR STABILITY ANALYSIS
The stability of a steady-state solution is analysed by usual technique consisting of the linearization of the equations of
perturbations around the steady state. It yields an eigenvalue problem defined by a matrix depending on a critical stiffness
kc = FψGV − FVGψ = −Gψ dF ss/dV , the partial derivatives ofF andG and parametrized byk andVH . It is denoted

M(k(l)
c , F

(l)
V , F

(l)
ψ , G

(l)
V , G

(l)
ψ ; k, VH) wherel denotes the number of distinctVi 6= 0. Note thatkc > 0 corresponds to a

velocity-weakening steady-state friction law. It has been shown that the velocity-weakening leads to an unstable sliding
with stick-slip in the case of a single interface [4, 3]. We show thatk

(i)
c /F

(i)
V may be an eigenvalue ofM whose algebraic

multiplicity depends on the number of the interfaces which slip with the same slip rate.



Depending on the stability of the configuration of sliding,i.e. one, two or three slip rates, there is a selection of the number
of the activated interfaces. We illustrate this result in the case of dry friction in the following.

One steady-state slip rate
When the steady-state friction law is monotonic, only one slip rate for all the interfaces is possible. ThenVi = VH/N ∀i
because of (3). Hence, the determinantal equation is(kc/FV − s)N−1 [

s2 − s (kc −Nk) /FV +NkGψ/FV
]

= 0. If
N > 1, we show that ifkc < 0 the sliding is stable for all the interfaces. Ifkc > 0, the biggest eigenvalue iskc/FV and
the slip is unstable. It is important to note that, in this configuration, the most unstable mode is real and then the stick-slip
instability as in the single-interface problem is not the most unstable mode. Looking at the associated eigenvector, it is
remarkable that the presence of many interfaces allows the system to be unstable while the shear stress remains constant.
The instability criterion of this configuration is thenkc > 0. That is, the slip rateVH/N has to correspond to a velocity
weakening behaviour of the friction law. About the evolution of an unstable system, the eigenvector associated tokc/FV
suggests thatN − 1 of the interfaces have to slow down whereas one of them has to speed up. Using the Dieterich-Ruina
law, this is confirmed by a direct numerical integration of the dynamical system (1)–(2) starting from an initial condition
near the steady state. We then expect that an unstable system evolves from a configuration withN interfaces sliding at
VH/N towards a system which slips atVH just on one interface. The slip is localised. Then, depending on the value of
k this single-interface sliding can be unstable and present a Hopf bifurcation. A question then arises: because the shear
stress has to increase, is this stick-slip instability able to promote a slip on another interface? It is impossible in the case
of friction laws like the Dieterich-Ruina one because of its logarithmic singularity and the unbounded evolution ofψ.

Two steady-state slip rates
We consider a convex steady-state friction law with a minimum atV = Vm so
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Figure 1. Dry friction law (cf. [1])

that two steady-state slip rates can exist: one in the creep regime, the other in the
inertial one (cf. Fig. 1). By conventionV1 < V2. Then,n interfaces slip atV1 and
m atV2 such thatn+m = N andnV1 +mV2 = VH by (3). This relation, together
with the steady-state conditionF ss(V1) = F ss(V2), has the obvious solutionV1 =
V2 = VH/N which is stable only ifVH > NVm. A solutionV1 6= V2 can only
exist if the curveτ ss(V ss) is asymmetric aroundVm. If the strengthening part of
τ ss(V ss) is steeper (resp. less steep) than the weakening part, a supercritical (resp.
subcritical) pitchfork bifurcation is expected to occur atVH = NVm (Fig. 2).
In fact, the linear stability analysis shows that the solutionV1 6= V2 is unstable
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Figure 2. Bifurcation diagram of the
two slip-rate solution

when there is more than 1 slow interface (n > 1) and stable otherwise. Indeed,
the roots ofM are given by the polynomialP3(s)

(
s1 − s

)n−1(
s2 − s

)m−1 = 0
whereP3(s) is a cubic andsi = k

(i)
c /F

(i)
V . Thus, 5 eigenvalues are expected.

Using the Routh-Hurwitz criterion to study the location of theP3’s roots, we show
that the modes1 is the most unstable fork(1)

c > 0. Providedn 6= 1, this mode
leaves the shear stressτ constant and suggests thatn − 1 interfaces stop and one
of them speeds up. The total number of slipping interfaces changes. We then guess
that such a multislip system should evolve towards a system with only one slow
interface (n = 1) becauses1 is no longer a mode. It can be further shown that the
solutionV1 6= V2 (VH < NVm) then is stable for any stiffnessk, at least whenVH
is close toNVm.

CONCLUSIONS
We show that the sliding of a heterogeneous medium holding a large number of dry frictional interfaces depends strongly
on the nature of the steady-state rate-and-state friction law. A purely velocity-weakening law implies that the multislip is
unstable and only one slipping interface is selected. On the other hand, if the steady-state law presents a minimum, there
is a critical driving velocityV cH = NVm (i.e. a critical number of interfacesNc = bVH/Vmc) above which (i.e. such
thatN ≤ Nc) the multislip system is stable, all interfaces sliding atVH/N . BelowV cH , a stable multislip system with1
slow interface andN − 1 faster ones could exist if the velocity-strengthening part of the friction law is steeper than the
weakening part. Thus, for this multislip system, the nature of the instabilities is different from the stick-slip oscillations
involved in the single interface problem and it could lead to interesting experimental investigations in order to constrain
the friction law around its minimum and get a better understanding of what happens whenV → 0. Furthermore, the
richness of behaviours of this system should give new insights concerning earthquake dynamics and the localisation of
deformation in brittle media.
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