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Summary A micromechanical framework is developed for the analysis of deformation inhomogeneities in the boundary layers that

are induced by contact of rough bodies. The main idea is to average the inhomogeneous fields along the contact surface but preserve
the dependence of the averages on the distance from the surface. Some properties of such averages are provided. As an example a
boundary layer associated with ploughing by an array of periodic sine-shaped asperities is analyzed by the finite element method.

INTRODUCTION

In the case of contact of rough bodies, the characteristic lengths of the roughness are typically much smaller than those of
the bodies. Thus two points of view can be adopted. Attigro-levelthe stress transfer is concentrated at small spots,

so called real contacts, and the distribution of the contact pressure is highly inhomogeneous. These inhomogeneities
govern the deformation of surface asperities and their interaction. Antwo-levelit is the slowly-varying average
(macroscopic) contact pressure that determines the overall deformation of the contacting bodies.

Friction laws are typically formulated in terms of the normal and tangential components of the contact traction vector

t = o - n, whereo is the stress tensor at the contact surfacesanslthe unit surface normal. Consequently, only the
exteriorpart [1] of the stress tenser is involved in the description and the complete stress/strain state in the vicinity of

the contact surface is typically not accounted for. However, in some situationsiénier (in-plane) parts of stress or

strain significantly affect friction and other contact phenomena, particularly when the deformation in the sub-surface layer
is inhomogeneous. This is for example the case of metal forming processes where the surface asperities are flattened more
easily in the presence of bulk plastic deformation. This leads to high real contact area fractions [2, 3], even at moderate
contact pressures. Depending on the lubrication regime this can result in an increased adhesive friction component or
affect lubrication conditions. A closely related effect is also observed in hardness indentation testing, where the in-plane
stresses affect the force-penetration response [4].

It seems that the effects associated with deformation inhomogeneities in the sub-surface contact layers and the interaction
of these inhomogeneities with the macroscopic stresses and strains have not attracted sufficient attention in the literature
yet. The aim of this work is thus to develop a micromechanical framework that would allow for consistent analysis of
these effects and, in a broader perspective, would help to develop improved constitutive laws of contact phenomena.

BOUNDARY LAYERS: AVERAGING, COMPATIBILITY CONDITIONS AND PROPERTIES

Consider a homogeneous body occupying dorfiaivith micro-inhomogeneousoundary conditions®, the traction, and

u*, the displacement, prescribed on the parts of boun@giyand 9,2, respectively. By micro-inhomogeneity of

(u*) we understand that it consists of a slowly varying, average fie(&*) and its fluctuatiort” (@*). The wave-length

of the fluctuation field is assumed small compared to the dimensiofis d¢f is also assumed that the inhomogeneity

of deformation induced by the inhomogeneous boundary conditions is confined to a thin sub-surface lagendaey

layer, alongo; 2 andd, (2.

The equations of the boundary layer are obtained using the method of asymptotic expansions of the classical homogeniza-
tion [5], under the assumption of periodicity of fluctuation fieldsand@*. As a result, in addition to themacroscopic

b.v.p. inQ with micro-homogeneousoundary conditions” (x) on 9,2 andu* () ond, £, thelocal b.v.p. of the boundary

layer is obtained for each point along the boundasi¢sando, ). The local b.v.p. of the boundary layer is a problem of a
homogeneous half-space with a periodic traction or a periodic displacement prescribed along its boundary (the conditions
of frictional contact can be treated accordingly). The displacement field in the boundary layer has the form

u(z,y) = uo(x) + E(x) -y +w(y), wy")=wly ), wly) =0, 1)
wherey = x /¢, e < 1, is the local coordinateF () is the macroscopic strain at poiaton the boundary; Q2 or 9,
andw is the unknown additional displacement field, which is periodic within the plafgefiodic) and vanishes far from
the plane (the local coordinate system is adopted such thgt theis is normal to the surface).
The averaging operation is then defined. For a figlg) its averagep at fixedys is given by

¢<y3>:<so>z§ /S oy)dydys,  |S] = /S sy, @

whereS is the periodicity cell within theyf, , y»)-plane. The inhomogeneous figldy) can now be decomposed into its
average value(ys) and fluctuationp(y), so thatp(y) = @(ys) + ¢(y) and(p) = 0.

Several properties of stress and strain averages can now be derived. The derivation is omitted here and three most impor-
tant properties are provided below. First of all, the following compatibility conditions hold:

Adp=04—%4=0, Aep=ep—Ep =0, 3)



where subscriptsl and P denote, respectively, the exterior and the interior parts of a symmetric tensor [1], so that for
exampleo = o 4 + op ando p - n = 0. The macroscopic stress (i.e. the uniform stress far from the surface) is denoted
by 3 and the macroscopic strain #.

Secondly, the (double) average total strain energy density is given by

er L
dys

whereo is a statically admissible field, is the strain derived from a kinematically admissible displacement field of the
form (1) withw = w + w. Note that the Hill's postulate of the classical micromechanics of heterogeneous materials
(i,e. {o : e} = {o} : {e}, where{-} is the average over the representative volume) is not satisfied in the case of
inhomogeneous boundary layers.

Consider now an elastic-plastic body. The local constitutive relatiands L : (¢ — ) with a constant elastic moduli
tensorL (the inelastic straiz? is, in general, inhomogeneous in the boundary layer). An analogous relation holds for
the averagesg = L : (¢ — &P), while far from the surface we ha’8 = L : (E — E?). In view of compatibility
conditions (3) the average stres§y;) is fully determined ife? (y3) is known, namely

Ao (y3) = —QAE"(y3), Ao (ys) =o(ys) — %, AeP(y3) = e¥(ys) — E”, ®)

where the operata® depends ot andn. Similar relations hold also for the average stra(p;). Note that Eqn. (5)is
a special case of the interfacial relations that hold for local stress/strain jumps at regular discontinuities [1].

(o:e)=0: (n-o-w), 4)

EXAMPLE: ASPERITY PLOUGHING

As an example consider a two-dimensional (plain strain) asperity ploughing problem. An array of rigid sine-shaped
asperities ploughs through an elastic-plastic half-space which is subjected to macroscopic in-plane tensile or compressive
strain E;; = EY,. After the sliding distance ol (I being the asperity spacing) the surfaces are separated and the
macroscopic in-plane strain is releaséd; = 0. The finite element mesh of a periodic cell of boundary layer is shown

in Fig. 1(a), where the distribution of plastic multiplier during relative sliding is also shown. It is seen that the plastic
deformation is localized close to the real contact and thus inhomogeneous. The distribution of the averagg @5¢ss
normalized by the yield stress, is shown in Fig. 1(b,c). The effect of the macroscopic in-plane stdjron the residual

stressz; in the boundary layer after separation and release of the in-plane strain is clearly visible in Fig. 1(c).

Note that it is only because of the inhomogeneity of deformation that plastic deformations appear in the sub-surface layer.
Application of an equivalent (in terms of the average value) uniform normal and tangential traction would result in a purely
elastic response (as it is the case far from the surface where the inhomogeneities vanish). Also note that the interior part
of the average stressp (e.9.511) deviates from its macroscopic counterpart only in a part of the boundary layer adjacent

to the surface, namely in the zone of non-zero plastic deformations, cf. Fig. 1(b,c), in agreement with relations (5).
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Figure 1. Asperity ploughing: (a) distribution of plastic multiplier; (b) distribution of the normalized average stress
511 (y3) /oy, with applied in-plane strai;; = EY; and (c) after the in-plane strain is releasggh = 0.
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