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Summary Impact problems with Coulomb friction in a finite number of degrees @&doen are not yet completely understood from the
mathematical point of view, and it is useful to possess a range of nefbpthe constuction of solutions. Moreau, Monteiro-Marques,
Stewart used a time-stepping method in order to construct a solution. aHegaalty approximation is proposed; it is simpler than
time-stepping, and it allows for more general friction cones and forerm@nsparent mathematical proofs. The non interpenetration
constraint is replaced by normal compliance approximation; it is notdiffio obtain estimates on the penalized equation. The passage
to the limit on Coulomb’s relation as the compliance tend3 seems to require the multiplication of Dirac masses by functions which
are discontinuous at the coordinate of the Dirac masses. Howeveiseesymptotics of the approximating problem make it possible
to find a relation in the limit between the tangential and normal components oé#tion.

INTRODUCTION

The mathematical understanding of impact with friction @& yet complete, even after the many contributions of Jean-
Jacques Moreau, in particular [4] and [3], the work of ManMeinteiro-Marques [2], [1] and David Stewart’s paper of
1998 [6], which was the first to allow for generalized cooed@s in this area.

These authors construct a solution through time-stepagid Stewart needed linear complementarity problemsifor h
analysis and this point of view forced him to approximate¢hdimensional round friction cones by pyramids.

The purpose of the present paper is to give an alternativeticantion of solutions, which relies on a standard penadina
technique, applied only to the impact part of the model.

The problems considered here use generalized coordiragshe exact assumptions will be given in the presentation.
Energy estimates are applied in a classical way to obtaifoumibounds on the coordinates and the velocities. The
variation of the generalized velocities can be estimateidibgs from convex analysis, though the set of constrairgs do
not have to be convex.

The passage to the limit on the impact complementarityicelas not difficult; the real difficulty comes from the passag
to the limit on Coulomb’s relation. In this extended abstrétwe principle of this passage to the limit will be descdibe

a simple case, in order to make the ideas accessible. Buppiieability of the methods goes well beyond the present
case.

A SIMPLE MODEL
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Figure 1. The mechanical set-up.

If we take into account the impact at only one end of the barntiathematical formulation of this problem is as follows,
mX = Ry,
mY = Ry — mg, (2)
J§ = —L(Ry cos — Rysind);

the non penetration condition is the complementarity ciioli



and the Coulomb friction condition is

{-1} ifr<Q,
Rr € —uSign(2)Ry, Sign(r) =< {+1} ifr >0, 3)
[~1,1] if r=0.

HOW TO PENALIZE

The penalization consists in replacing the interpenetnatbndition by a normal compliance law;sifis a characteristic
time which will tend to0, we let
Ry, = mmax(—y,,0)/r%. (4)

Equations (1) and (3) are not changed and initial conditaegrescribed. The system can now be treated as an integrod-
ifferential monotone problem, where the integral part cars&en as a perturbation of a standard class of equations.

CONVERGENCE

The easy estimates

The first easy estimate is an energy estimée; Y, 6. and their first derivatives are bounded uniformlyrire (0, 1]
and int € [0,T]. Itis obtained by multiplying the first equation of (1) B, , the second by, and the third by, and
by integrating and applying a Gronwall inequality.

The second easy estimate is an estimate on the integra[@Ef of |Ry .|, uniformly in 7 as in [5]. This estimate
implies another estimate on the integralBfy . |.

Therefore, one can extract subsequences, and the passagéinat from (4) to (2) is standard; one should simply reknar
that the limitingR y is a measure.

The difficult estimates

Passing to the limit on (3) is a more delicate problem, siRgemay have a Dirac mass precisely whemanishes. It is
possible to decompose the sequence of approximaRons into the sum of two terms: one approximates the continuous
part of Ry and one approximates the atomic part of this measure. Onahignaous part, relation (3) passes to the
limit. An equation of the formR%. € —uSRY, relates the atomic parts of the limiting measures, wieis a scalar
function defined on the support of the atomic daf of Ry. The value ofS can be calculated from the knowledge of
the generalized coordinates and the right and left limithefvelocities at each point supporting a Dirac mass.

CONCLUSION

What good are all these mathematics? First, the proof ske@beve can be extended to much more general situations,
and the extent of these generalizations will be describéldertcommunication.

Second, the choice of a Coulomb friction model is a decismisimplify reality; how good this decision is can be
evaluated by comparison to experiment and also by findingvbether the mathematics make sense or not. Having a
range of mathematical methods to solve a problem meandhptoblem is tractable, and gives arguments in favor of this
modelization. It also gives insight into the numerical apjimation strategies, and is eventually helpful for untierding

the mechanics of the problem.
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