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Summary Impact problems with Coulomb friction in a finite number of degrees of freedom are not yet completely understood from the
mathematical point of view, and it is useful to possess a range of methods for the constuction of solutions. Moreau, Monteiro-Marques,
Stewart used a time-stepping method in order to construct a solution. Herea penalty approximation is proposed; it is simpler than
time-stepping, and it allows for more general friction cones and for more transparent mathematical proofs. The non interpenetration
constraint is replaced by normal compliance approximation; it is not difficult to obtain estimates on the penalized equation. The passage
to the limit on Coulomb’s relation as the compliance tends to0 seems to require the multiplication of Dirac masses by functions which
are discontinuous at the coordinate of the Dirac masses. However, precise asymptotics of the approximating problem make it possible
to find a relation in the limit between the tangential and normal components of the reaction.

INTRODUCTION

The mathematical understanding of impact with friction is not yet complete, even after the many contributions of Jean-
Jacques Moreau, in particular [4] and [3], the work of ManuelMonteiro-Marques [2], [1] and David Stewart’s paper of
1998 [6], which was the first to allow for generalized coordinates in this area.
These authors construct a solution through time-stepping;David Stewart needed linear complementarity problems for his
analysis and this point of view forced him to approximate three dimensional round friction cones by pyramids.
The purpose of the present paper is to give an alternative construction of solutions, which relies on a standard penalization
technique, applied only to the impact part of the model.
The problems considered here use generalized coordinates,and the exact assumptions will be given in the presentation.
Energy estimates are applied in a classical way to obtain uniform bounds on the coordinates and the velocities. The
variation of the generalized velocities can be estimated byideas from convex analysis, though the set of constraints does
not have to be convex.
The passage to the limit on the impact complementarity relation is not difficult; the real difficulty comes from the passage
to the limit on Coulomb’s relation. In this extended abstract, the principle of this passage to the limit will be described in
a simple case, in order to make the ideas accessible. But the applicability of the methods goes well beyond the present
case.

A SIMPLE MODEL
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Figure 1. The mechanical set-up.

If we take into account the impact at only one end of the bar, the mathematical formulation of this problem is as follows,

mẌ = RT ,

mŸ = RN − mg,

Jθ̈ = −`
(

RN cos θ − RT sin θ
)

;

(1)

the non penetration condition is the complementarity condition

y ≥ 0, RN ≥ 0, 〈y,RN 〉 = 0, (2)



and the Coulomb friction condition is

RT ∈ −µSign(ẋ)RN , Sign(r) =











{−1} if r < 0,

{+1} if r > 0,

[−1, 1] if r = 0.

(3)

HOW TO PENALIZE

The penalization consists in replacing the interpenetration condition by a normal compliance law; ifτ is a characteristic
time which will tend to0, we let

RN,τ = mmax(−yτ , 0)/τ2. (4)

Equations (1) and (3) are not changed and initial conditionsare prescribed. The system can now be treated as an integrod-
ifferential monotone problem, where the integral part can be seen as a perturbation of a standard class of equations.

CONVERGENCE

The easy estimates
The first easy estimate is an energy estimate:Xτ , Yτ , θτ and their first derivatives are bounded uniformly inτ ∈ (0, 1]
and int ∈ [0, T ]. It is obtained by multiplying the first equation of (1) bẏXτ , the second bẏYτ and the third byθ̇τ , and
by integrating and applying a Gronwall inequality.
The second easy estimate is an estimate on the integral over[0, T ] of |RN,τ |, uniformly in τ as in [5]. This estimate
implies another estimate on the integral of|RT,τ |.
Therefore, one can extract subsequences, and the passage tothe limit from (4) to (2) is standard; one should simply remark
that the limitingRN is a measure.

The difficult estimates
Passing to the limit on (3) is a more delicate problem, sinceRT may have a Dirac mass precisely whenẋ vanishes. It is
possible to decompose the sequence of approximationsRN,τ into the sum of two terms: one approximates the continuous
part of RN and one approximates the atomic part of this measure. On the continuous part, relation (3) passes to the
limit. An equation of the formR

a
T ∈ −µSR

a
N relates the atomic parts of the limiting measures, whereS is a scalar

function defined on the support of the atomic partR
a
N of RN . The value ofS can be calculated from the knowledge of

the generalized coordinates and the right and left limits ofthe velocities at each point supporting a Dirac mass.

CONCLUSION

What good are all these mathematics? First, the proof sketched above can be extended to much more general situations,
and the extent of these generalizations will be described inthe communication.
Second, the choice of a Coulomb friction model is a decision to simplify reality; how good this decision is can be
evaluated by comparison to experiment and also by finding outwhether the mathematics make sense or not. Having a
range of mathematical methods to solve a problem means that the problem is tractable, and gives arguments in favor of this
modelization. It also gives insight into the numerical approximation strategies, and is eventually helpful for understanding
the mechanics of the problem.
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