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Summary A model for quasistatic frictional contact between a viscoelastic body and a moving foundation is described. The contact

is modeled by the normal compliance and dry friction conditions and the wear of the contact surface is included. The novelty lies

in allowing for the diffusion of the wear debris on the contact surface. Such phenomena arise in many settings, in particular in

orthopedic biomechanics where they degrade the effectiveness of the joint prosthesis. A weak formulation of the problem is derived

and, under a smallness assumption on the problem data, the existence of the unique weak solution for the model is stated.

THE MODEL

We model and analyze the processes when a viscoelastic body, which is acted upon by volume forces and surface
tractions, is in frictional contact with a moving foundation and as a result a part of its surface may undergo
wear. The wear particles or debris diffuse on the whole of the contact surface. Such situations arise, among
others, in orthopedic biomechanics in the context of bone-implant interface. Since friction and the wear debris
influence the quality and long term performance of artificial joints and implants, they need to be taken into
account when modelling these processes, see, e.g., [1,2] and the references therein.
To describe the setting we denote by Ω ⊂ R3 the domain occupied by the body and by Γ the boundary of Ω,
which is assumed to be Lipschitz and is divided into three disjoint measurable parts ΓD, ΓN and ΓC , such that
measΓD > 0. The body is clamped on ΓD, prescribed surface tractions of density fN act on ΓN and volume
forces of density f0 act in Ω. An initial gap g (≥ 0) exists between the potential contact surface ΓC and the
foundation, and is measured along the outward normal ν. To simplify the model we assume that the coordinate
system is such that ΓC occupies a regular domain in the plane x3 = 0, the foundation is planar, and is moving
with velocity v∗ in the plane x3 = −g. Furthermore, ΓC is divided into two subdomains Dd and Dw by a
smooth curve γ∗, and wear takes place only on the part Dw, while the diffusion of the wear particles takes place
on the whole of ΓC . The boundary γ = ∂ΓC of ΓC is assumed Lipschitz and is composed of two parts γd and
γw. Thus, ∂Dw = γw ∪ γ∗ and ∂Dd = γd ∪ γ∗. The setting is depicted in Fig 1.
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Fig. 1. The setting (left); contact surface ΓC ; wear is produced in Dw (right).

We let S3 represent the space of second order symmetric tensors on R3 while “ · ” and ‖ · ‖ denote the inner
product and the Euclidean norm on R3 and S3, respectively. We let u be the displacement vector, σ the stress
field and ε(u) the linearized strain tensor. Below uν and uτ represent the normal and tangential displacements,
and σν and στ represent the normal and tangential stresses, respectively, Also [0, T ] denotes the time interval
of interest, for T > 0, and a dot above a variable denotes the time derivative.
We describe the wear of the surface in terms of the wear function w = w(x, t) which is defined on Dw, and the
diffusion of the wear particles by the wear particle surface density function ζ = ζ(x, t) which is defined on ΓC .
Here, x = (x1, x2, 0), since ΓC lies in the plane Ox1x2. The wear function w measures the volume density of
material removed per unit surface area (see, e.g., [4] and references therein).
The classical formulation of the problem of frictional contact of a viscoelastic body with wear diffusion is as
follows.

Problem P . Find a displacement field u : Ω × [0, T ] −→ R3, a stress field σ : Ω × [0, T ] −→ S3, the wear
function w : Dw × [0, T ] −→ R and a surface particle density field ζ : ΓC × [0, T ] −→ R, such that

σ = A(ε(u̇)) + G(ε(u)) in Ω× (0, T ), (1)
Div σ + f0 = 0 in Ω× (0, T ), (2)



u = 0 on ΓD × (0, T ), (3)
σν = fN on ΓN × (0, T ), (4)

−σν = pν(uν − wχ[Dw ] − g) onΓC × (0, T ), (5)

‖στ‖ ≤ µ|σν |; στ = −µ|σν | u̇τ − v∗

‖u̇τ − v∗‖ if u̇τ 6= 0 on ΓC × (0, T ), (6)

ẇ = µpνR∗(‖u̇τ − v∗‖) on Dw × (0, T ), (7)

ζ̇ − div (k∇ζ) = κµpνR∗(‖u̇τ − v∗‖)χ[Dw] on ΓC × (0, T ), (8)

ζ = 0 on γ × (0, T ), (9)
u(0) = u0, ζ(0) = ζ0 w(0) = w0. (10)

Here, (1) is the viscoelastic constitutive law of the material in which A and G are given nonlinear constitutive
functions that may be nonhomogenuous; (2) are the equations of equilibrium, since the process is assumed
quasistatic; (3) and (4) are the displacement and traction boundary conditions; (5) is the normal compliance
contact condition, and (6) is the friction condition. The coefficient of friction µ = µ(ζ, ‖u̇τ − v∗‖) is assumed
to depend on the density of the wear particles and on the slip rate. Equation (7) is the pointwise Archard type
wear production rate in Dw, while (8) is the diffusion equation for the wear particles in which k denotes the
wear particle diffusion coefficient, κ is the wear rate coefficient, and R∗ : R+ → R+ is the truncation operator:
R∗(r) = r if r ≤ R, R∗(r) = R if r > R, R being a given positive constant. This operator is needed to avoid
some mathematical difficulties, but from the applied point of view the use of R∗ is not restrictive since, the slip
velocity is bounded. We use χ[Dw] on the right-hand side of (8) since the particles are produced only in Dw,
and the rate of production is multiplied by β. An absorbing boundary condition (9) is used, since once a wear
particle reaches the boundary γ = ∂ΓC it is removed from the system. Finally, the initial conditions are given
in (10) in which u0, ζ0 and w0 are prescribed.
A version of problem (1)–(10) in which it was assumed that ζ = βw in Dw, where β is a conversion factor from
wear depth to wear particles surface density, was studied in [3]. This simplification allows to eliminate the wear
function w. However, here we present the full problem, since the wear w may be nonzero even when most of
the wear debris is gone so that ζ is virtually zero.

MAIN RESULTS

In [3] we established the existence of a weak solution for the simplified model. The assumptions on the problem
data were provided, and by using Green’s formula we obtained a variational formulation for the problem. It is
in the form of a system coupling an evolutionary variational inequality for the displacement field u, an ordinary
differential equation for w and a parabolic evolution equation for the surface particle density field ζ. Under a
smallness assumption on the data the existence was proved. The proof was carried out in several steps, by using
arguments of evolutionary equations, time-dependent elliptic variational inequalities and fixed point. The full
details can be found in [3].
Here we report on our progress in dealing with the full problem (1)–(10).

CONCLUSIONS

The mathematical problem is new and important in applications. These results extend some of our results
for contact problems to include wear diffusion. The relaxing of the assumption that w and ζ are proportional
has mathematical and applied merit. The topic is currently under investigation and we hope to deal with the
mathematical and numerical aspects of various variants of the model in the very near future.
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