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Extended summary.
A consistent and robust method is described to solve normal axisymmetric contact problems at smooth and convex but

otherwise arbitrary profiles. Special emphasis is put on the presence of finite friction causing partial slip between dissim-

ilar solids. It is shown that at partial slip the evolving relative stick-slip contour is independent of any convex contact pro-

file at monotonic loading. For flat and conical profiles with rounded edges and apes, relations between force, depth and

contact contours are given together with surface stress distributions. For dissimilar solids, full field values were com-

puted individually. The location and magnitude of critical stress measures are determined for a range of geometrical and

material parameters.

The theory laid down by Hertz (1882) for normal frictionless contact between two nonconforming bodies of elliptical

profiles stands as a landmark in linear elasticity. It would take almost a century until the corresponding problem was

attacked for adhesive contact by Mossakovskii (1963) and Spence (1968) and for finite friction by Spence (1975a,

1975b). Already in the Hertz formulation based on linear kinematics, the problem is essentially nonlinear as a moving

boundary is present. A further nonlinearity will evolve when finite friction prevails as stick-slip boundaries have to be

determined when partial slip occurs. Substantial progress was made by Spence (1975a, 1975b), who showed that under

monotonic loading a single stick-slip contour will appear being independent relatively to the contact profile provided it

has a polynomial shape. More recently, c.f. e.g. Ciavarella and Hills (1999), Ciavarella (1999), contact of various non-

standard profiles such as blunted cones and flat indenters with rounded edges, has been investigated. Besides more gen-

eral contact law behaviour, the main intention has been to predict initiation of plastic flow or the occurrence of fracture

and fatigue. The present effort follows in this spirit.

Mossakovskii (1963) seems to be the first to propose that normal contact problem at adhesive behavior may be attacked

in two steps, by first solving the problem at an incremental advance and subsequently apply superposition. Emphasizing

self-similarity for power law profiles, further progress was made by Spence (1968, 1975a, 1975b). Mossakovskii and

Spence were mainly concerned with determination of surface tractions and displacements at contact. In case of axisym-

metric and frictionless contact it was later shown by Hill and Storåkers (1990) that complete field values may readily be

determined by a solution for incremental fields followed by cumulative superposition along radial paths. Numerically

such a procedure is at advantage as only a stationary mesh is required when finite elements are to be used. The strategy

was applied in full by Storåkers and Larsson (1994) for Norton creep by combining a finite element procedure with

cumulative superposition, which for the case of linear viscosity corresponds to linear elasticity. In the present linear elas-

tic case history dependence evolves through the presence of finite friction. It will be shown though that this issue is only

fictitious as when partial slip arises, the stick-slip contour relative the external contact contour will be constant. This pre-

vails for any contact profile provided that is smooth and convex and the loading is axisymmetric and monotonically

increasing.

The problem to be analysed involves mutual impression of two isotropic elastic solids at normal contact. It is assumed

that the two solids are homogeneous and have axisymmetric and convex though otherwise arbitrary smooth surface pro-

files. For simplicity and clarity, the problem is first posed for a rigid punch indented into an elastic half-space later to be

generalized for the case of two dissimilar elastic solids.

Two axisymmetric punch shapes were investigated in particular, flat indenters with rounded corners and conical ones

with rounded tips. The two profiles are described by

in obvious notation.

When finite Coulomb friction applies, , following Spence (1975a) for power law profiles, , it is assumed a priory

that only an interior stick region, , and an exterior slip region, , evolve. It will be shown that this

holds true for any profile, f(r), which is smooth and convex.

The problem so formulated involves a moving contact boundary, a, and a stick-slip contour, c, which have to be deter-

mined as part of the analysis. In a general situation when the contact profile, f(r), is arbitrary the problem has to be

treated incrementally and accordingly formulated in rate form.

Introducing reduced variables
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where h(a) is the indentation depth, it may first be observed that at an incremental change, the reduced problem corre-

sponds formally to that of flat punch of radius unity indented to a unit depth with an unknown relative stick-slip radius,

.

A finite element procedure, based upon the commercial code ABAQUS (2002), was developed to solve the intermediate

flat die problem in reduced variables. The method adopted was essentially based on an earlier analysis of normal friction-

less indentation as explained in detail by Storåkers et al. (1997) with the influence of finite friction subsequently taken

into account by Carlsson et al. (2000). It should be observed in particular that the moving boundary is reduced to a sta-

tionary one.

Once the reduced problem has been solved, field values of the original problem may be found by simple cumulative

superposition through integration along radial paths as proposed by Hill and Storåkers (1990). By quadrature of eq. (2),

displacement fields follow as

and stress fields alike.

The missing link between the physical depth of indentation, h(a), and contact profile, f(r), is given by a Volterra integral

equation

which is readily solved by standard methods.

The problem discussed so far has involved only contact between a rigid indenter and an elastic half-space. Accordingly,

the interior fields to be determined, as by a finite element method, require solutions only for a half-space. When two dis-

similar elastic solids are in contact, in general, solutions for interior fields are required in a full space. By a linear trans-

formation, it has been shown explicitly by Mossakovskii (1963) and Spence (1968,1975a,1975b), that the resulting

contact tractions may be directly determined by aid of a half-space solution for a tailored combination of material param-

eters. As a result, two uncoupled problems pertinent to dissimilar half-spaces with prescribed normal and tangential

stresses are obtained and may be readily solved individually by the ABAQUS (2002) procedure.

Some selected results are illustrated for particular situations. The invariant relative stick-slip contour is shown in detail as

a function of the friction coefficient, , and Poisson’s ratio, , or alternatively the Dundurs parameter. For rounded coni-

cal and flat profiles, besides global contact laws, normal and tangential surface stresses are shown as functions of profile

geometry, b/a cf. eq. (1), and . The location of maximum tensile stress is determined in order to predict Mode I fracture

initiation. Interior fields are used to determine peak values of von Mises stress to predict initiation of plastic flow. The

dissimilar case is analysed for different surface profiles, compliance values and friction coefficients. In particular it is

shown where and when fracture and plastic flow is expected to occur.
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