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Summary The main assumptions made in order to quantify geometrical hardening are that the impacts are collinear, and that
torques can be ignored; the impact speeds are sufficiently slow so as to be quasi-static; the seismic wave energy losses are
insignificant; and the materials are elasto-plastic. Repeated, identical impacts then increase Newton’s coefficient of restitution in a
universal manner, depending only on the initial coefficient of restitution, and the number of impacts.

INTRODUCTION

Hardening of elasto-plastic materials, due to repeated impacts, is a process made famous from the manufacture of samurai
swords. In this process, the metal alters its grain boundary structure, which increases the yield strength of the metal, making it
harder, and allowing a finer blade to be manufactured [1].

An analogous process occurs during repeated, identical impacts of elasto-plastic materials, called here “geometrical
hardening”. This occurs because the repeated, identical impacts increase the area of contact between the two bodies, which
increases Newton's coefficient of restitution. Newton's coefficient of restitution is unity for impacts between two plane elasto-
plastic bodies, and repeated impacts cause the impacting bodies to tend towards two plane bodies in the region of impact. This
then resembles hardening of the metal. However, this is a wholly geometrical effect, and is not associated in any way with a
change in the grain structure of the elasto-plastic material.

The aim of the rest of this paper is to detail the universal aspect of how Newton's coefficient increases during the process of
geometrical hardening. The main assumptions made in order to derive the results below are that the impacts are collinear,
and that torques can be ignored; the impact speeds are sufficiently slow so as to be quasi-static; the seismic wave energy losses
are insignificant; and the materials are elasto-plastic.

THE UNIVERSAL CURVE FOR COLLINEAR IMPACTS

The sketch in Figure 1 shows the force-displacement curve for repeated, identical collinear impacts between two elasto-plastic
bodies. The first impact occurs with initial and final relative speeds (always assumed collinear) of v (=v1) and w1. Subsequent
impacts occur with the same initial relative speed of v, and separate with a relative speed of wn. The speeds vn are the initial
relative speeds of approach needed to generate the same displacements as indicated by the points shown as vn.
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Newton’s coefficients of restitution are then Cn, where Cn = -wn/v, and applying an energy balance to the curves in
Figure 1 yields
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where we have assumed that the impacts are sufficiently energetic to be in the asymptotic “inverse one quarter”
regime,
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for some constant α [2].

Figure 1. Sketch of the typical force-displacement curve for
repeated, identical, quasi-static impacts between two elasto-
plastic bodies. The steep path along the w entries is assumed to
be wholly elastic, while the upper curve along the v entries is
assumed to be essentially fully plastic.



From the recursion relationship in (1), it is clear that as n becomes large, Cn tends towards unity, and so after a great
many impacts, the system behaves largely elastically. This is achieved by successively increasing deformations.

Equation (1) is completely independent of particle properties, apart from the appearance of C1, Newton's coefficient of
restitution for the first impact, and so is essentially a universal property of repeated, identical elasto-plastic impacts. The
discrete solutions satisfying (1) are given in Figure 2. Given an initial coefficient of restitution on the ordinate, the subsequent
increase in the coefficient of restitution is then fixed. Each discrete symbol in Figure 2 corresponds to the solution to the
recurrence relationship in (1), with initial conditions running between 0.1 and 0.9 in steps of 0.1. The limiting case in Figure
1 is when wn is essentially v, since then the impacts simply move the displacements elastically up and down the w lines.

An approximate expression for Cn can be obtained from (1) by setting the term Cn
2 to Cn

8/3, and then replacing the
resulting linear recurrence equation by the corresponding linear differential equation. The corresponding solution is
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These continuous curves are plotted in Figure 2, for C1 running from 0.1 to 0.9 in steps of 0.1. It is clear then that for
very low values of C1, many hundreds of repeated impacts are needed for Cn to approach unity, but for more typical
values of C1, say 0.7, then Cn approaches unity after about 10 or so impacts.

Finally, we note that it is problematical to attempt to quantify the increase in apparent hardening. The approach of Newton's
coefficient of restitution to unity suggests the apparent hardening is increasing, whereas the increased displacements which
occur suggest that the apparent hardening is reducing. This contradictory situation has developed because while the system is
becoming, in practice, more elastic with time, the section of the upper curve in Figure 1 denotes behaviour which becomes
more plastic with time.

CONCLUSIONS

The central result is contained in Figure 2, showing that the increase in Newton's coefficient of restitution follows universal
curves, depending only on the starting coefficient of restitution, and the subsequent number of impacts. Experimental
evidence supporting these universal curves is to appear [3]. In practice, seismic wave losses of a few percent, or so, mean that
the universal curves above do not tend exactly to unity as shown, but to a few percent below unity, for quasi-static impacts.
Before this happens, experimental difficulties can arise from failure to achieve perfect alignment of the impacting particles,
which will cause the experimental measurements of the coefficients of restitution to lie somewhat below the universal curve in
Figure 2. Before this happens, there are indications from experiment that the theory in this paper describes the early increases
in the coefficient of restitution satisfactorily.
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Figure 2. Discrete symbols denote
the corresponding solutions to (1),
for initial values C1 between 0.1 and
0.9 in steps of 0.1, as a function of
the number of impacts. The
continuous lines in Figure 2 are the
curves described by (3).


