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 CONTACT MECHANICAL ANALYSIS OF ELASTIC MULTIBODY STRUCTURES 
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Summary A theory of multibody structures of elastic blocks interconnected by plane dry joints with Coulomb friction is developed by 
basing the analysis on contact mechanics. A general theory of voussoir arches and segmental beams is developed.  
 
This analysis is based on the contact mechanics of elastic blocks with approximately rectangular longitudinal section 
subjected at their end faces to normal force N, moment M and shear force Q with friction coefficient f at the plane joints. It 
is then possible to relate corresponding generalized deformations, translations vx, vz and rotations ωy, linearly to N, Q and 
M. Based on these statical and kinematical concepts and their interrelations a mechanics of assemblages of elastic units in 
contact is developed and the effects of various structural factors are discussed. 
If the blocks are rigid, the kinematics at collapse is determined by discontinuities at joints, mutual translations vxh, vyh and 
dito rotations ωyh, which define linear gap deformations γx, γz with rotation axes being tangent to the cross section A or 
constant contact sliding γz over the whole of A. In both cases contact sliding γz ≠ 0 requires  
 

| q | = | Q/(fN) | = 1          (1) 
 
The corresponding load Pc can uniquely be determined only if friction coefficient f = tanϕ = 0 or ∞. In these cases the 
set of collapse loads Pc represent the lateral surface of uniquely determined convex cones Eϕ=0 (shear stress τ = 0) and 
Eϕ=π/2 (slip γz = 0). In the intermediate range 0 < ϕ < π/2 the corresponding E(ϕ) cannot be uniquely determined. We 
introduce a combined friction f = tan(ρ+β), where β characterizes friction induced by the inclination tanβ of the conical 
asperities on the contact plane and ρ represents the dissipative friction on the inclined slopes. At given ϕ = ρ+β the cone 
E(ρ,ϕ-ρ) represents a set of inclusions with extreme member E(0,ϕ) ⊃ E(ρ,ϕ-ρ) and to every E(ρ,β) corresponds its 
orthogonal polar cone E*(ρ,β) = Ξ(β) (Fig. 1b) that comprises the set of desintegrating velocities. 
If the voussoirs are elastic we can separate the deformations of the blocks from those of the joints by linearization of the 
crack width to ⎯γxh(z) = vxh + zωyh and constant ⎯γzh over the entire surface A. This actually represents an extension to 
cracks of Reissner’s linearizations in his plate theory. The modified stress energy enlarged with the slip work of the joints of 
the arch is thus  
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Here⎯γxh

i(e) = -vxh
i(e) represents the interpenetration at the eccentricity e = km of force N (k is the kern point distance; for a 

rectangular cross section k = d/6) and⎯γzh
i denotes the generalized shear deformation (Fig. 1a) 
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where the integrals are extended over the area Aγ = A - Ac + As ; Ac is the contact area and As denotes the area of contact 
sliding As ⊂ Ac . In order to make the vxh independent of Q the joint plane must be a plane of symmetry with regard to the 
internal forces N and Q. This warrants that the contact area for combination (N,Q) doesn’t differ from that for pure N and 
the nonelastic vzh can be included in the elastic scheme. Thus we obtain 
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where vxh

i only depends on the crack volume Vh
i = ∫γx

idA and (because of the impenetrability) stretches the centroid axis 
even if the crack doesn’t extend to the centroid of the cross section. The quantity q = Q/|fN| expresses the fullness of 
frictional contact at the joint –1 ≤ q ≤ 1 (Eqn. 1). Furthermore there applies 
 
         (5) hhhhh 2m/;m α=∂δ∂β−α=δ
 
If the compressive force N acts at a point on the contour of the A with extreme value | m |max the values of αh , βh , δh and κh 
→ ∞. Similarly if | q | → 1 then κh → ∞ inducing unbounded translation γz on the entire contact area Ac of the joint. It 
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should be observed that the rotation axis of the end faces doesn’t coincide with the zero-line of the σx stresses as in the 
corresponding rigid-plastic case, because the hinge is situated inside the compressed region (Fig. 1a).  
The above results concerning symmetric joints of equal blocks can be extended also to curved voussoirs of varying length 
and depth and with unsymmetric joints by retaining equal plane contact faces Ac and equal normal forces N with the same 
point of action and equal shear forces at the joint. Thus for a joint of two ashlars (1) and (2) with rectangular cross sections 
A1 = bd1 , A2 = bd2 the parameters of the joint are 
 
  (6) ))m,q()m,q((½;))m()m((½;))m()m((½ 222h111hh22h11hh22h11hh κ+κ≈κβ+β≈βα+α≈α
 
Corresponding approximation of of αh , βh and κh are determined for a collection of typical joints of beams, columns, plates 
and vaults.  
Using formulae (2), (4) and (5) a solution of the redundant forces, thrust H, shear Y and moment Z at the elastic centroid of 
an arch with fixed supports is obtained by minimum condition of W(σ) and an iterative solution process. Thus for the 
horizontal thrust we obtain the equation 
 

∑∫ ∫
=

⎟
⎠

⎞
⎜
⎝

⎛
ϑγ+α+ϑη+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ϑξ+ϑ+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ϑξ+ϑ+

n

1i
zhh

L L

o
2

o
22

2

2
sin

GA
Q)

k
zcos(

EA
d|N|

EA
dssinQ

G
EcosN

i
zM

EA
dssin

G
Ecos

i
zH  (7) 

 
In the formulas (2) and (7) the integrals on the right hand side express the share of the monolithic arch, whereas the sums 
represent the share of the corresponding rigid body assemblage with dry joints. 
A comprehensive representation provides the stiffness surface F(∆) and the cone of load displacements Ξ (Fig. 1b). The 
effects of various factors (the number of blocks, the slenderness of the arch, the value of the friction coefficient) on the 
stiffness surface and the cone of load displacements of the structure are presented.  
The voids γx developing at the joints may have a remarkable stabilizing effect at dynamic actions. The kinetic energy of an 
impact is mainly balanced by the increased potential energy of gravity induced by the vertical components of the crack 
volumes which many times exceeds the share of the strain energy (Fig. 1c).  
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Fig. 1.  a) Linearized deformation of a block between parallel rigid plates loaded by a force R.   b) Stiffness ellipsoid and 
stiffness surface F(∆) (shaded) of a block with the cone of monolithic kern Ek, the cone of stability E(π/4) and the truncated 
cone of displacements Ξ.  c) Staggering restitution ux , uz of the upper plate from imposed horizontal dislocation (test). 
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