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Summary In the paper the elastic-viscoplastic constitutive relations of the Perzyna-type are investigated for plane stress problems. A
fully implicit integration algorithm is adopted and the relevant expression for the consistent tangent operator for the von Mises yield
criterion and flow functions of arbitrary type is derived. It is shown how the elasto-plastic rate equations of standard plasticity can be
generalized to overstress-type models of viscoplasticity, where the stress point can be located outside the loading surface. Numerical
example is given to reveal the differences and the similarities between the plastic and the viscoplastic overstress models.

PROBLEM FORMULATION

This paper presents a version of the return-mapping algorithm for plane stress problems. Three-dimensional radial return
algorithm can be easily modified for the plane strain problem, but not for problems with additional constraints on stresses.
Two such constraints are of interest for plates and shells: (a) the zero normal stress cordgien(), and (b) the plane

stress condition,o,3 = o33 = 0. With the latter constraints the radial return algorithm and an explicit expression for
viscoplastic multiplier cannot be used (cf. Simo and Taylor [2], Alfano at al.[5]).

In literature, various viscoplastic material models have been proposed for the analysis of time-dependent deformations
of materials. A widely-used viscoplastic formulation is the Perzyna model [1]. The main feature of this model is that
the rate-independent yield function used for describing the viscoplastic strain can be larger than zero, the effect known as
the 'overstress’. The characteristics of the Perzyna model as well as the numerical discretization have been addressed by
various authors (e.g. Simo and Hughes[3], Ju [6], Klee and Paulun [7]).

PERZYNA VISCOPLASTICITY

The main idea of the viscoplastic flow mechanism is to accomplish in one model the description of behaviour of material
valid for the entire range of strain rate changes. To achieve this aim the empirical overstress fihetsdreen introduced
and the strain rate is postulated in the form as follows (cf. Perzyna [1])
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whereo,, is effective stress,? is effective straingy is a yield stress and the overstress function is defined as
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In equatioril) and(2) the material constants afiec [0, +oo] andm > 1. The symbol() means(®) = F for >0 and
(®) =0 for F <0.

NUMERICAL EXAMPLE

We analyze a thin rectangular strip with a circular hole in its axial direction, subjected to increasing extension in a direction
perpendicular to the axis of the strip and parallel to the long side of the rectangular section. For symmetry reasons the
analysis is performed for one quarter of the section with appropriate boundary conditions. The adopted mesh consists of
230 nodes and 98 elements. The material used was an aluminiififi with elastic modulugZ = 7000 MPa, Poisson’s

ratiov = 0.3, a yield stressrg = 243 MPa. The strain hardening of the aluminium is idealized by a linear hardening
function with the plastic tangent moduliis = 220 MPa, like in Theocaris and Marketos [4].

The ratio of the diametet of the hole to the widthuv of the strip was taken equal to one half. The thicknéssf the

strip was taken equal to 1/56 of the width, which is much less than the radius of perforatibrin each analysis, the
velocity U, was fixed. Different velocitied] = Au/At are obtained by changing the time incremeht and keeping

Awu constant.

The return mapping algorithm for the Perzyna viscoplasticity model was implemented in ABAQUS via a user-defined
material subroutine UMAT. We used a 4-node element with reduced Gauss integafsiiR) .



The obtained strain and stress distributions are compared with the numerical results of Klee and Paulun [7] and with
the experimental data published by Theocaris and Marketos [4]. The following results of the numerical calculations are
presented.

1. The isochromatic patterns in normal incidence for the ratio of the diameter of the hole to the width of the strip
d/w = 0.5 (after Theocaris and Marketos[4] (Steps I-11-V-VI1)) is compared with the distribution of the equivalent plas-

tic stress obtained by our numerical method.

2. The evolution of elastic-plastic boundary féfw = 0.5 is presented. The final plastic zones for the loads IV
t = 0.402) and VI ¢ = 0.5302) obtained numerically by our method and Klee and Paulun [7] based on the FEM
are compared with the experimental ones.

3. The distribution of stress,, in the minimum section of strip in dependence of time is given. The steady state can be
compared with the measured values of Theocaris and Marketos [4].

A good agreement of the numerical results with the experimental ones is observed.

CONCLUSIONS

A non-linear solution procedure based on the backward-Euler operator for the rate dependent Perzyna-type models is
presented. The plane stress return-mapping formulation for a general overstress viscoplasticity models is described, and
it has following features:

e the stresses are updated in an efficient and reliable way;
e in one algorithm we can efficiently handle the viscoplastic and plastic plane stress cases;

e the derived consistent tangent operator gives the appropriate convergence rate in the Newton-Raphson solution
procedure. For other viscoplastic models (e.g. Duvaut-Lions), results can be readily obtained by specializing the
relevant flow and overstress function. In the absence of viscous effects, i.e. whgn— oo the consistent
plastic tangent operator for plane stress is recovered,;

Numerical computations carried out for the typical benchmark problem and comparison with the experimental data of
Theocaris and Marketos [4] confirmed the accuracy and robustness of the proposed algorithm.
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