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Summary Modelling of the nonelastic materials sensitive to the type of the processes are presented. Two different approaches are given. Some 
experimental verifications and model parameter identifications are demonstrated for different characteristic models. 

 
Introduction 
Sensitivity to the type of the process is universal property well known in many practical cases. The presentation of this 
property is like different behavior of the nonelastic material during fore example: extension or compression; loading or 
unloading; hardening or softening; plastic deformation with athermal or thermofluctuational micromechanismes; relaxation 
or creep; etc. The principle of the modeling of this type of material behavior is based on the introducing models with 
different material constants according to the type of process in consideration.  
In this paper we will give two approaches:  

(1) First: It is more or less classical approach, using nonsymmetric yield surfaces in the stress space; 
(2) Second: It is on the base of extended strain space, introducing the process type indicators 

and incremental constitutive relations with different material functions for different process types.  
 

First approach 
Grey cast iron, some steels, light alloys, ceramics, polymers, composites, rocks and soils etc., show in tests different plastic 
behavior and strength in tension and compression, volumetric plastic deformation and other nonclassical effects. A 
nonclassical effect for this material is the volumetric dilatation in tension, compression and torsion. The classical theory of 
plasticity which is based on the Huber-von Mises-Henckly or the Tresca conditions in the case of significant nonclassical 
effects is unworkable. In the case of different behavior in tension and compression we propose extension of the classical 
yield conditions formulated on the base of the modified plastic work as a hardening parameter.  
We propose the yield function   

( ) ( )2 1f J 0= + ϕ χ σ −ψ χ = ,   
where J2 is the second invariant of the stress deviator, σ1 is the maximum principal stress, χ is the hardening parameter, 
( )ϕ χ  and ( )ψ χ  are material functions determined by uniaxial tests   
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The functions ( )Tσ χ  and ( )Cσ χ  can be obtained as a current yield stresses in uniaxial tension and compression 
respectively. 
The hardening parameter taking in account the pressure sensitivity of the grey cast iron can be defined as  
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where ijσ  is the stress tensor and p
ijdε  is the increment of the plastic strain tensor, m 1I 3σ =  is the mean stress and b1, b2, 

b3, b4 are material parameters depending on the loading type. These parameters can be identified by simple tests in tension, 
compression and torsion.  
Since the experimental results indicate plastic volume dilatation in tension, compression and pure torsion calculation of 
transverse strain using associated flow rule gives unrealistic values independent of the choice of the yield function. More 
accurate modeling of the volume change in the elastoplastic region can be obtained using non-associated flow rule. The 
plastic potential is proposed in the following form  

( ) ( ) 2
2 1 1g J I I= + γ χ + ϑ χ ,  

where ( )γ χ  and ( )ϑ χ  are functions of the hardening parameter and can be identified using experimental data from 
uniaxial tests in tension and compression. The increment of the volumetric plastic deformation can be determined from the 
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relations ij ijkl kld D dσ = ε with pe
ij ij ijd d dε = ε − ε since the total strain increment can be divided to an elastic and plastic part. 

Based on the plastic consistency condition the plastic multiplier can be expressed in the form 
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where Dklmn is fourth order tensor of elastic material constants and dεmn is the tensor of total strains.    
The verification of the model was realized using experimental data for grey cast iron. Experimental tensile stress-strain 
relation ( )1 1σ − ε was used to obtain the function ( )Tσ χ . There is a good agreement between the computed values and the 
experimental data from uniaxial and biaxial tests with tubular specimens.  

 
Second approach 
For modeling the material’s sensitivity to the type of the process we introduce: (1) six dimensional strain vector 
∈α , (α=1, 2… 6) on the base of the strain tensor; (2) Back stress vector ×

α∑ on the base of the back stress tensor, (3) 
Damage vector Dα on the base of the damage tensor; (4) Temperature T; (5) internal time τ. We build a linear seven 
dimensional vector space L=Y6 x IT x TI+ , where Y6 is the six dimensional vector space, IT is the one dimensional axis for T 
and TI+  is the one dimensional positive axis for τ.  

The process measures in the fixed point (xi) and the time t are Λt≡{∈α , a
αΣ , Dα , T, τ}, with a

αΣ = αΣ  - ×
αΣ , 

∈α= (rev)
α∈ + (irrev)

α∈ . 
The process duration is from to to tf e.g. t∈[to , tf ]. At the fixed time t=th we assume to know the state measures Λh≡ {∈α(h) , 

a
(h)αΣ , Dα(h) , Th , τh}. This state is reached from the process in previous time interval ∆t with the type according to the values 

of the indicator manifold Λc ≡{g, d, q}. All indicators take the values: (-1) – for the small quantities: (0) – for the moderate 
quantities and (+) – for the big quantities. g is for the strain-rate range; d is for the damage range; q is for temperature range. 
We examine the process evolution during the actual process time interval ∆th =ta –th , where ta  is the actual process time. All 
process measures change ∆Λh ≡{∆∈α , a

α∆Σ , ∆Dα , ∆T, ∆τ}. The type of the process during this small evaluation is identify 
using the fallowing indicator manifold Λd ≡{λE , λD, θ, υ}. λE gives the type of the deformational process development; λD 
gives the type of the damage process development; 

1 for war min g;
T 0 for isotehermal process change;  
T

-1 for cooling.
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0 for reversibal process change;
+1 for irreversible process change.
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(-1) is impossible according to thetthermodynamical restrictions. 
The constitutive equations are in incremental form: 

(rev) (irrev)E Nα αβ β αβ β∆Σ = ∆∈ + ∆∈ ;  
(irrev)R×

α αβ β∆Σ = ∆∈ ;  
(irrev)D Qα αβ β∆ = ∆∈ ,  

where the matrixes (Eαβ), (Nαβ), (Rαβ) and (Qαβ) depend on the state Λh at the moment th and on the two indicator groups: Λc 
and  Λd. It is possible to define the internal time in connection with the dissipation energy e.g.  
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We give, like examples, some models for different particular cases (deformational type sensitive material; sensitive to type 
of rheological process; sensitive to the type of loading etc). We give also some experimental verifications and model 
parameter identifications for various materials – some composites, metals, woods etc. 
 


