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Summary Modelling of the nonelastic materials sensitive to the type of the processes are presented. Two different approaches are given. Some
experimental verifications and model parameter identifications are demonstrated for different characteristic models.

Introduction
Sensitivity to the type of the process is universal property well known in many practical cases. The presentation of this
property is like different behavior of the nonelastic material during fore example: extension or compression; loading or
unloading; hardening or softening; plastic deformation with athermal or thermofluctuational micromechanismes; relaxation
or creep; etc. The principle of the modeling of this type of material behavior is based on the introducing models with
different material constants according to the type of process in consideration.
In this paper we will give two approaches:

(1) First: It is more or less classical approach, using nonsymmetric yield surfaces in the stress space;

(2) Second: It is on the base of extended strain space, introducing the process type indicators
and incremental constitutive relations with different material functions for different process types.

First approach

Grey cast iron, some steels, light alloys, ceramics, polymers, composites, rocks and soils etc., show in tests different plastic
behavior and strength in tension and compression, volumetric plastic deformation and other nonclassical effects. A
nonclassical effect for this material is the volumetric dilatation in tension, compression and torsion. The classical theory of
plasticity which is based on the Huber-von Mises-Henckly or the Tresca conditions in the case of significant nonclassical
effects is unworkable. In the case of different behavior in tension and compression we propose extension of the classical
yield conditions formulated on the base of the modified plastic work as a hardening parameter.

We propose the yield function

f =3 +o(x)or—w(x)=0,
where J, is the second invariant of the stress deviator, oy is the maximum principal stress, y is the hardening parameter,
¢(x) and () are material functions determined by uniaxial tests
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The functions oy () and o¢(x) can be obtained as a current yield stresses in uniaxial tension and compression

respectively.
The hardening parameter taking in account the pressure sensitivity of the grey cast iron can be defined as
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where o is the stress tensor and dsi'} is the increment of the plastic strain tensor, o, =1,/3 is the mean stress and by, by,

bs, by are material parameters depending on the loading type. These parameters can be identified by simple tests in tension,
compression and torsion.

Since the experimental results indicate plastic volume dilatation in tension, compression and pure torsion calculation of
transverse strain using associated flow rule gives unrealistic values independent of the choice of the yield function. More
accurate modeling of the volume change in the elastoplastic region can be obtained using non-associated flow rule. The
plastic potential is proposed in the following form

g=J; +Y(X)|1 +9(X) |f ;
where y(x) and S(X) are functions of the hardening parameter and can be identified using experimental data from
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uniaxial tests in tension and compression. The increment of the volumetric plastic deformation can be determined from the



flow rule def, = drd;; a—g , Where dA is plastic multiplier. The stress increment can be computed via the elastic stress-strain
relations doy; = Dy ey with def; = de;; —dgi'} since the total strain increment can be divided to an elastic and plastic part.
Based on the plastic consistency condition the plastic multiplier can be expressed in the form
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where Dymn is fourth order tensor of elastic material constants and de, is the tensor of total strains.
The verification of the model was realized using experimental data for grey cast iron. Experimental tensile stress-strain

relation (Gl —al)was used to obtain the function o (X) There is a good agreement between the computed values and the
experimental data from uniaxial and biaxial tests with tubular specimens.

Second approach
For modeling the material’s sensitivity to the type of the process we introduce: (1) six dimensional strain vector

€4, (@=1, 2... 6) on the base of the strain tensor; (2) Back stress vector Y, on the base of the back stress tensor, (3)
Damage vector D, on the base of the damage tensor; (4) Temperature T; (5) internal time 1. We build a linear seven
dimensional vector space L=Y¢ x I+ X I, where Yg is the six dimensional vector space, |7 is the one dimensional axis for T
and 15 is the one dimensional positive axis for .

The process measures in the fixed point (x;) and the time t are A={e, , X%, D, , T, t}, with ==X -X",
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The process duration is from t, to t;e.g. te[ty, t; ]. At the fixed time t=t, we assume to know the state measures An= { €y,
2t » Day» Th,y T} This state is reached from the process in previous time interval At with the type according to the values

of the indicator manifold A.={g, d, q}. All indicators take the values: (-1) — for the small quantities: (0) — for the moderate
quantities and (+) — for the big quantities. g is for the strain-rate range; d is for the damage range; q is for temperature range.
We examine the process evolution during the actual process time interval At, =t,—t,, where t, is the actual process time. All
process measures change AAy={Ae,, AZ%, AD,, AT, At}. The type of the process during this small evaluation is identify

using the fallowing indicator manifold Aq={Ag, Ap, 0, v}. A gives the type of the deformational process development; Ap
gives the type of the damage process development;

+1 for warming;
0= ﬁ =<0 for isotehermal process change;
-1 for cooling.
At |0 for reversibal process change;
v m N {+1 for irreversible process change.

(-1) is impossible according to thetthermodynamical restrictions.
The constitutive equations are in incremental form:

AT, =E A el™ +N A el™;
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AT, =R A €l™;
AD, =Q,,A €™,
where the matrixes (Eqg), (Nap), (Rap) and (Qqp) depend on the state A, at the moment t, and on the two indicator groups: A
and Ag. It is possible to define the internal time in connection with the dissipation energy e.g.
1o}
t=[ziael™ dt.
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We give, like examples, some models for different particular cases (deformational type sensitive material; sensitive to type
of rheological process; sensitive to the type of loading etc). We give also some experimental verifications and model
parameter identifications for various materials — some composites, metals, woods etc.



