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Summary We discuss existing gradient plasticity proposals that are intended to represent internal stress effects of 
dislocation distributions, and show by a common and simple example that all such proposals overestimate the strain 
energy or stress of a dislocated medium by the introduced phenomenology. Based on the above observation, we 
propose a model of crystal plasticity of unrestricted nonlinearity, both in material response and kinematics, that does 
not have the above defect. The model phenomenologically accounts for short-range interactions through the usual 
strength-based hardening assumptions of conventional crystal plasticity and calculates the long-range stress and 
evolution of so-called geometrically necessary dislocation distributions, at the desired scale of resolution, in a 
mechanically rigorous manner. We present computational results for a simplified version of the model. The 
development of microstructure is a natural consequence of the model. 
 

The analysis of metal plasticity based on a (physically) rigorous connection to its origins in the 
mechanics of defects in elastic solids is a complex matter. The primary source of complexity arises 
in achieving an adequate theory that can describe the dynamics of crystal defects, namely 
dislocation distributions, as it arises from the interaction of the stress fields of these defects as well 
as applied loads. Also, simply calculating the stress field of a dislocation distribution in a body 
undergoing finite deformations and whose crystal elastic response is non-convex is not a trivial 
matter. Moreover, even if such a theory could be developed, its physical resolution would have to 
be in the nanometer scale, whereas the effects of the physical mechanisms described above are 
manifest in plasticity even at the micron scale and above. Consequently, a coarse-graining 
technique for nonlinear evolutionary systems becomes essential, once a fine-scale theory of 
plasticity/dislocation mechanics has been constructed. 

It is fair to say that there are no modeling approaches available presently that can rigorously deal 
with all of the aspects mentioned above. Gradient plasticity approaches (Aifantis, 1987; Fleck and 
Hutchinson, 1997; Gao et al. 1999; Acharya and Bassani, 2000; Busso et al. 2000; Menzel and 
Steinmann, 2000; Gurtin, 2002) are being developed to deal with such challenges. The approaches 
amongst these that address single crystal plasticity are based on modifications of conventional 
single crystal plasticity theory (Rice, 1971; Asaro, 1983; Bassani, 1994) that add the prediction of 
size dependent response to the list of capabilities of  the conventional theory. The description of 
short-range interactions of dislocations leading to work hardening is phenomenological in these 
approaches, but is calibrated robustly for practical and scientific applications so as to yield good 
predictive capability with respect to the various other features of single crystal response apart from 
work-hardening. It should also be mentioned that work-hardening is the most complex feature of 
plastic response and, as of now, there are no fundamental treatments of the problem that may be 
called a theory.  

As to the issue of handling the evolving stress field in the body that provides the driving force for 
its inelasticity, conventional as well as gradient approaches utilizes the same technique whose 
conceptual connection to the actual stress field of the dislocation distribution in the body is not so 
clear.  

As a perceived improvement of this situation, some gradient plasticity theories have been 
proposed where the incompatibility of the plastic distortion, a continuum measure of so-called 
geometrically necessary dislocations (GND), is included in the list of dependencies of the free 
energy of the solid along with the elastic distortion. The incompatibility being a measure of 
dislocation density, under the assumption that the conventional theory is unable to represent the 
strain energy and internal stress contribution of the GND distribution, such a device may be 
expected to be a better reflection of the strain energy and stress content of the body. 
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However, we show that the internal stress, and consequent strain energy, of a dislocation 
distribution that is represented by the incompatibility of the constitutively specified plastic 
distortion is automatically taken into account by the conventional theory employing an elasto-
plastic constitutive assumption in which the strain energy and stress depend only on the elastic 
distortion. Consequently, an added contribution to the strain energy due to the incompatibility is 
unnecessary, and can be shown to be strictly erroneous in many situations. 

However, it remains a fact that conventional plasticity fails to represent strain energy and stress 
effects of dislocation distributions in a realistic manner. Combining this observation with the 
conclusion of the previous paragraph, this failure may only be attributed to an inadequate 
prescription of the plastic distortion in the conventional theory. A theory of nonequilibrium 
dislocation mechanics that addresses the issues of calculating the stress field of a dislocation 
density distribution in a nonlinear material under finite deformations and the evolution of such a 
density giving rise to plasticity has recently been proposed (Acharya, 2001; 2003; 2004). While its 
complete range of predictive capability still remains to be explored, initial results seem to be 
promising. This theory, however, is for plasticity at the smallest scales. Apart from its intrinsic 
value for the analysis of inelasticity at scales of a tenth of microns to a tenth of a nanometer, it is 
envisioned that it will serve as the fine theory for coarse-graining to achieve a proper theory of 
macroscopic plasticity, when such a coarse-graining technique for nonlinear evolutionary equations 
becomes available in the scientific literature. 

As a practical expedient, in this work we adopt the ideas of field dislocation mechanics pertaining 
to calculating the stress field and evolution of GND distributions and append them to the gradient 
plasticity approach of Acharya and Beaudoin (2000). The rationale behind this approach is that the 
gradient plasticity approach is thought to be adequate for the modeling of short-range interactions 
of unresolved dislocation distributions (statistically stored dislocations, SSD), and the long-range 
stress field and kinetic effects of the dislocation distribution at scales that are resolved by the 
calculation (so-called geometrically-necessary dislocations, GND) are fundamentally accounted for 
by the additional dislocation mechanics component of the theory. The ‘combined’ model does not 
suffer from the inconsistency mentioned earlier with respect to accounting of strain energy of 
dislocation distributions. 

We describe this finite deformation ‘combined’ model of single crystal plasticity, and show 
computational results for a simplified version that includes all the important conceptual details of 
the model. 
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