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Summary A viscoplastic constitutive equation for inelastic deformation of polymers is formulated by combining the kinematic hardening
creep theory of Malinin and Khadjinsky with the nonlinear kinematic hardening rule of Armstrong and Frederick. The nonlinear kinematic
hardening rule is modified in order to describe peculiar strain recovery of polymers during unloading in particular. Experimental results for
polyethylene are simulated by the constitutive equation and the validity of the modification is verified.

INTRODUCTION

Polymers reveal significant viscoplastic deformation at the room temperature. Peculiar strain recovery is shown during
unloading in particular, and it is quite different from what is shown in metals. Such deformation during unlading in
polymers has been clarified experimentally [1] and theoretical formulation of the deformation has been attempted [2].
The authors have employed a viscoplastic constitutive equation which was formulated by Murakami et al. [3] by
combining the kinematic hardening creep theory of Malinin and Khadjinsky [4] with the nonlinear kinematic hardening
rule of Armstrong and Frederick [5]. Then the authors have attempted to modify the nonlinear kinematic hardening rule
in order to describe the strain recovery of polymers during unloading so far.

In the present study, a loading surface will be defined in a viscoplastic strain space, and a criterion of loading-unloading
will be defined by using the loading surface. Moreover, a parameter will be defined by using the loading surface, and
the nonlinear kinematic hardening rule will be modified by using the parameter in order to describe the peculiar
deformation of polymers during unloading.

VISCOPLASTIC CONSTITUTIVE EQUATION

A Small deformation is assumed for simplification here. The total strain &; is assumed to be the sum of an elastic strain
&; and a viscoplastic strain ¢,":i.e., &; = &; + ;" . The elastic deformation is subjected to the Hooke’s law.

The viscoplastic strain rate g’”Yp, on the other hand, is derived from the kinematic hardening creep theory of Malinin and
Khadjinsky [4]. The viscoplastic deformation is assumed to be incompressibility and independence on the hydrostatic
stress, and a viscoplastic potential g is given by an effective stress &, =s; —a, as g =(1/2)§;&, where s; is a
deviator of the stress o;; and a; is that of a back stress «; which is the center of the viscoplastic potential surface in

the deviatoric stress space. Then the viscoplastic strain rate g:p is derived as égp = A(0g/0o;) = A&, where A is a
positive scalar function depending on a stress and a stress path.
An equivalent effective stress £ and an equivalent viscoplastic strain rate £ are defined as & = [(3/ 2)&,¢; ]“ ? and

e® = [(2/3)é”Y"g‘”Yp]“2. Then the viscoplastic strain rate & is derived as &” = (3/2)(¢™ /£)&, . In this equation, the
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relation between the equivalent effective stress £ and the equivalent viscoplastic strain rate is necessary. In the

present study, the Sorderberg’s rule, ¢* = n[exp(g?/ K)—l], is adopted where n and K are material constants.

@ (2) .

Finally, the back stress «; is represented by the sum of a linear term «;~ and a nonlinear term o~ : ie.,

a; =a;” +a” . The linear term o” is given by the Prager’s rule as ¢ = A" and the nonlinear term ¢;* is given

by the nonlinear kinematic hardening rule of Armstrong and Frederick [5] as déz) = b(Cg‘i‘j’p —aiﬁz)?p) (AF_model)
where A, b and C are material constants.

MODIFICATION OF EVOLUTION EQUATION OF BACK STRESS

A loading surface f =0 is defined in a viscoplastic strain space as f = (2/3)8”@8”@ - p2 where p represents a radius

of the loading surface f =0 which is depicted as a hypersphere. Development of the loading surface and a criterion of
loading-unloading are prescribed as follows:
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0 f<Oorné®<0 unloading’ = I:(af/agn"zxaf /65;2)]“2 ’

where ™ is a rate of change in the equivalent viscoplastic strain £ with respect to time t .
Then a parameter W is introduced [3]. The parameter ¥ is defined by the relation between the loading surface and the

present state of a viscoplastic strain as ¥ =[p — & sgn(¢™)]/2p . The parameter ¥ is always 0 during loading. On

the other hand, the parameter ¥ has some value depending on the relation between the loading surface and the present
state of a viscoplastic strain only during unloading.

In the present study, the nonlinear kinematic hardening rule of Armstrong and Frederick is modified by using the
parameter ¥ in order to describe significant strain recovery during unloading. Following two models are discussed.

Model 1: ¢(” =b(C,&" -C,¥"&" —""), Model 2: ¢ = b(1- 2¥)(C&l —a?E"™),

_ {é"p f =0andn® >0 loading af/ag;"
ID =

where C,, C,, mand A are material constants.

In the Model 1, the transient recovery term [3] is introduced into the AF model, and the term works only during
unloading. In the Model 2, on the other hand, a rate of evolution in the nonlinear term of a back stress changes
depending on the value of the parameter ¥ during unloading.

RESULTS OF SIMULATION

Experimental results for polyethylene [6, 7] are simulated by using the viscoplastic constitutive equation and two
modified models where the Model 1 or the Model 2 is used instead of the AF model in the constitutive equation.

Figure 1 shows stress-strain relations under monotonic compression at constant total strain rates. Figure 2, on the other
hand, shows creep curves under constant compressive stresses. In the figures, each symbol represents the experimental
result [6] and each line is a result of the simulation. There is no difference among three models, and viscoplastic
deformation of polyethylene can be described by the viscoplastic constitutive equation proposed in the present study.
Figure 3 shows a stress-strain relation in shear deformation at a constant strain rate in which the loading direction is
reversed at y =0.13. Significant strain recovery appears immediately after the reverse of the direction, and the AF

model can not describe the behavior adequately. The modified models, on the other hand, can describe the strain
recovery, and prediction by the Model 2 is closer to the experimental result [7] than that by the Model 1.
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