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Summary A general approach to optimal motion synthesis of constrained multibody systems is presented. It applies to controlled 
mechanical systems such as industrial manipulators and legged-locomotion systems. An optimal control problem is stated. A 
parametric optimization technique based on approximating joint motion coordinates using spline functions of class C3 is developed to 
recast this primary problem into an optimization problem of mathematical programming. The latter is solved using SQP algorithms. 
 

INTRODUCTION 
 
Fully actuated multibody systems such as robotic manipulators and walking machines present kinematic redundancies 
which require organizing their movements appropriately. Furthermore, we are especially interested with motion phases 
during which the mechanical system may present kinematic loops. In that case, over-actuation must be solved suitably 
in order to avoid undesirable stress in the closed kinematic chains, together with antagonistic forces which could result 
in sudden break of contact, or sliding when one-sided contacts are at stake. In any case, there is the need for generating 
well coordinated movements, dynamically efficient and few energy consuming. A general approach consists in setting 
and solving an optimization problem that minimizes a dynamic performance criterion. In this way, a constrained 
optimal control problem is stated. It can be solved using two main computational techniques. In [1], Pontryagin’s 
Maximum Principle was implemented to generate a variety of optimal motions. In this presentation, we are interested in 
more widespread techniques based on parametric optimization as in [2-4]. Such an approach helps to cope with the 
computational complexity of dynamic models of multibody systems. Moreover, the optimization problem can be solved 
in that case using sequential quadratic programming algorithms which are computationally quite efficient. 
 

AN OPTIMAL CONTROL PROBLEM 
 
Dynamic modeling 
We consider any rooted multibody systems with tree-like topology and having possibly kinematic loops when moving. 
All joints are assumed to be actuated. The common approach used for modeling the constrained dynamics of such 
systems consists in considering closed loops as cut at appropriate joints or contacts, while accounting for relevant 
closure conditions which restore the original kinematics. Then, introducing a full set of configuration coordinates put 
together in the nq-vector q, a Lagrangian dynamic model can be formulated as the differential-algebraic set of equations 
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The nc-order vector-function cC  represents a set of closure constraints. Its Jacobian matrix is qCqΦ ∂∂≡ /)( c . In (1), M 
stands for the mass-matrix, the vector function C contains centrifugal and Coriolis inertia terms, and G represents 
gravity terms. The nτ-vector τ stands for actuating joint torques, and λ is the nc-vector of Lagrange’s multipliers 
associated with closure constraints cC . τA  is a (nτ×nq)- matrix depending on the choice of generalized coordinates. 
 
Constraints defining feasible movements 
Some boundary conditions must be accounted for as initial and final equality constraints: 
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Joint motion and velocity limitations, actuating torques limitations, obstacle avoidance, and one-sided contact 
conditions, result in constraints we represent formally as the set of inequalities: 
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Some hk in (4) do not depend explicitly on all variables introduced in (4). 
 
Performance criterion 
The performance criterion we want to minimize is basically the integral amount of quadratic joint actuating torques. 
However, as λ in (1) represents a set of forces to be applied in order to hold the tips of cut kinematic chains in their 
prescribed positions defined by the closure constraints (2), we consider such efforts as additional active forces. In this 
way, we add a quadratic function in λ to the Lagrangian of a quadratic functional in τ to be minimized, namely: 
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Then, the problem to be solved consists in computing a triple-vector time-function ))(),(),(( tttt λτq→ minimizing the 
criterion J in (5) while satisfying the conditions (1) to (4). Let us underline that the minimization of λ through J, plays a 
key role in our approach for succeeding in generating optimal motions of constrained multibody systems 



STATING A PARAMETRIC OPTIMIZATION PROBLEM 
 
A key point in dealing with parametric optimization applied to motion synthesis lies in the representation of time 
functions such as generalized coordinates, using a finite set of discrete parameters. In [2-3], coefficients of polynomial 
functions are dealt with as optimization parameters for approximating generalized coordinates. A more accurate 
approach consists in fitting spline-functions at knots uniformly distributed along the motion time. In [4], splines of class 
C2 were used for optimizing gait cycles of a planar biped. However, it appeared that optimal actuating torques could 
have jerky variations at knots. This situation may be overcome using splines of class C3 ensuring the differentiability of 
joint accelerations at knots. We define such functions as the concatenation of 4-order polynomials as follows: 
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Connecting polynomials s'∗ϕik  at knots up to their third derivative yields spline functions of class C3. Then considering 
xi’s in 
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as a set of optimization parameters, the connecting conditions of s'∗ϕik  result in the linear system: xMcM xc =  in 
which c stands for a column-vector of coefficients cijk’s, and cM is a sparse, hexadiagonal matrix. Assuming that cM is 

invertible, the vector c can be expressed as the linear function of x: xMMc xc
1−= . Thus, generalized coordinates qi’s in 

(8) can be written as functions of x and t, namely 
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Then, the next step consists in expressing τ and λ as functions of (x, t) through (7) and (1). Defining the matrix 

),( TΦAA τ= and the vector ),( TTT λτu = , equation (1) may be rewritten using (7), as the vector equation linear in u: 
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If 0λ ≠ , A is not invertible, and equation (8) is underdetermined in u. However, A is a full rank matrix. Thus for any 
given (x, t), it is possible to extract a minimum norm solution using the right pseudo-inverse matrix A+ of A, namely 
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Using this new expression for u, the criterion (5) is changed into the real function of x 
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Now, through (7) and (9), we account for closure constraints (2), boundary conditions (3), and constraints (4) as the 
double set of equality and inequality constraints defined at every knots tk : 
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The initial optimal control problem defined by the statements (1) to (5) is then restated through (10) and (11) as a 
constrained, non-linear minimization problem of mathematical programming. It can be efficiently solved using 
computing codes available in numerical software libraries. 
 

CURRENTLY AVAILABLE SIMULATIONS and CONCLUSIONS 
 
The above approach was implemented to generate optimized cyclic steps of a human-like seven-link planar biped. The 
only data required to create a gait pattern is the walking velocity. Step length, postural configurations at transitions 
between single-support and double-support phases, and transition times between successive phases are optimized as 
well. It was possible to generate smooth gait cycles for any walking speed between 0.4m/s and 1.3m/s. Quite restrictive 
constraints such as unilaterality of ground-foot contacts and non-sliding conditions are perfectly satisfied. 
The method presented yields suboptimal solutions having smooth properties: no undesirable oscillations for the qi’s, and 
no jerks for the τi’s. It does not require a great number of control points. It could be easily developed for industrial and 
space manipulators, as well as to simulate human movements. 
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