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THE ABSOLUTE COORDINATE FORMULATION WITH REDUCED STRAIN AND STIFFENING
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Summary The present work contributes to the field of multibody systems with respect to the absolute coordinate formulation (ACF)
with a reduced expression of the strain energy. The ACF is known to be advantageous with respect to the description of constraint
equations and the constant mass matrix. Absolute coordinates are used as unknowns, similar to nonlinear finite element methods. In
the present work, a consistent linearization of the equations of motion with respect to small deformations but large rigid-body motions
is performed. This formulation leads to a constant mass matrix while the nonlinear stiffness matrix is composed of the constant small
strain stiffness matrix rotated by the underlying rigid body rotation. The equations of motion are derived for the case of a constrained
multibody system and geometrical stiffening terms are introduced.

INTRODUCTION

The computation of stress and vibration in heavily loaded machine elements is necessary in order to design such parts
for a specific lifetime. Since the beginning of multibody system dynamics, several computational strategies emerged,
see e.g. Shabana[6]. The methodologies can be separated into ones that use absolute coordinates and a nonlinear strain-
displacement relation and others that use relative coordinates with respect to a co-moving frame and a linear strain-
displacement relation, also known as floating frame of reference formulation (FFRF), which leads to a constant stiffness
matrix but highly nonlinear mass matrix. Absolute coordinates, which can be e.g. displacements or displacement gra-
dients, have been utilized according to standard finite element formulations or specific beam, plate or shell models have
been derived, see e.g. Mikkola and Shabana[5]. Recently, the ACF, which is basically equivalent to a geometrically
nonlinear finite element formulation with specific generalized coordinates, has been extended with respect to a reduced
strain formulation, see Gerstmayr[3]. The idea of the reduced strain formulation is to linearize the geometrically non-
linear Green strain tensor with respect to a virtual co-moving frame similar to the FFRF. The linearization is based on
the rotation of the co-moving frame and leads to a constant mass matrix, but nonlinear stiffness matrix. The method has
already been tested with for 3D solid multibody systems with constraints, see Gerstmayr and Schöberl[3], and extended
with respect to elasto-plasticity, see Gerstmayr[2]. The method turned out to be computationally very efficient in the case
of implicit Runge Kutta time integration schemes, see Gerstmayr and Schöberl[4]. As a specific feature of the method,
the mass matrix is constant, the stiffness matrix is consisting of the transformed (rotated) constant stiffness matrix and
some additional small nonlinear terms.

ABSOLUTE COORDINATE FORMULATION WITH A REDUCED STRAIN TENSOR

The derivation of the equations of motion starts with the weak form of the equa-
tions of motion without any simplifications regarding deformation or displace-
ments, ∫

V0

ρü · δu dV0 +
∫

V0

S : δE dV0 −
∫

V0

f0 · δu dV0 = 0 (1)

The Lagrangian formulation is used throughout,S denotes the2nd Piola-
Kirchhoff stress tensor andE is the Green strain tensor. External forces are
denoted byf0, u are the unknown displacements,V0 is the initial Volume andρ is
the material density. The goal of the present formulation is to neglect some terms
in the virtual work of internal forces according to the widely used assumptions in
multibody systems, such that the deformations are small and that displacements
are small with respect to an underlying rigid body motion. According to Figure
1, the displacement of a pointX is split into a rigid partur and a flexible partus

defined by
u = u0 + (R− I)X + us = ur + us. (2)
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Figure 1: Kinematical relations, small
deformationus and large rotationR.

The unknowns areu and Eq. (2) is used to compute the flexible partus as function ofu. This kind of decomposition is
a priori non-unique. The rotation matrixR and the displacement of the reference pointu0 depend either on the whole
displacement field{u(X), X ∈ V0} or on some parts of it. Examplarily, we can use three specific points such as

R = R(u(X1),u(X2),u(X3)) and u0 = u0(u(X1)). (3)

The dependence onto the three displacements might be highly nonlinear, and a certain orthogonalization rule has to be
considered within this function. The coordinatesX1, X2 andX3 are chosen similar to the definition of the well known



chord or tangential frames in the FFRF. Alternatively, weighted integrals can be used for the definition of mean axis
frames, see Gerstmayr and Schöberl[3]. The flexible part of displacementsus can be written as function ofu

us = u− u0 − (R− I)X. (4)

The fully nonlinear Green strain tensor is defined by

E =
1
2

(
∇u +∇uT +∇uT∇u

)
=

1
2

(
∇uT

s R + RT∇us +∇uT
s ∇us

)
. (5)

In the FFRF deformations are frequently assumed to be small, the linearized strain tensor is utilized and therefore the
stiffness matrix is constant. It can be shown that this assumption is equivalent to||(∇us)|| � 1 in the proposed ACF.
Thus, a reduced Green strain tensorẼ is introduced, where the quadratic partẼnl = 1

2∇uT
s ∇us is assumed to be

negligible,||Ẽnl|| � 1,
Ẽ = Sym(RT∇us) = Sym(RT (∇u + I)− I). (6)

The variation of this tensor isδẼ = Sym(δRT∇us + RT δ∇us) and contains the cumbersome variation of the rotation
matrix R. The reduced Green strain tensor of Eq. (6) is inserted into Eq. (1). A weak formulation foru is derived by
means of a linear elastic constitutive law,S = λtr(Ẽ)I + 2µẼ = Ẽ : 4D, with the Lamé coefficientsµ andλ and the
identity matrixI. According to Eq. (1), the ACF with the reduced Green strain tensor reads for the linear elastic case∫

V0

ρü · δu dV0 +
∫

V0

Ẽ : 4D : δẼ dV0 =
∫

V0

f0 · δu dV0. (7)

According to Zienkiewicz and Taylor[7], the geometrical stiffening could be represented by means of additional terms
in the virtual work of internal forces, such as

∫
V0
S0 : δẼnl dV0, whereS0 is represents an appropriate approximation of

stresses within the body of interest. In multibody systems, it can be sufficient to approximate these terms by means of
centrifugal forces due to high angular velocities of the underlying rigid body motion. The final weak form of equations of
motion reads ∫

V0

ρü · δu dV0 +
∫

V0

Ẽ : 4D : δẼ dV0 +
∫

V0

S0 : δẼnl dV0 =
∫

V0

f0 · δu dV0. (8)

The discretized equations follow from a particular finite element discretization, see e.g. Zienkiewicz and Taylor[7].
According to standard constraint formulations in multibody system dynamics based on Lagrange multipliers we write

Mq̈ + hRK hRT (q− qr) + fnl(q) + fstiff(q) +
(

∂C
∂q

)T

λ = fext

C(q) = 0 (9)

The kinetic energy leads to a constant mass matrix whereq are the discretized displacements,qr is the rigid body part of
discretized displacements,M is the constant mass matrix,K is the constant small strain stiffness matrix of the body in the
reference configuration,fext are the external forces,fnl is a nonlinear function ofq which is of the orderq2

s andfstiff is
the part due to stiffening. The matrixhR consists of sub-matricesR in the diagonal. In previous investigations it turned
out that Eq. (9) can be solved efficiently, see Gerstmayr and Schöberl[4]. Due to special properties of the mass and the
stiffness and rotation matrices, only a nonlinear system of the size of the constraint forcesλ has to be solved during each
time step of an implicit time integration method, assuming the nonlinear parts to be solved in the fixed point iteration. In
the case of small deformations, the nonlinear part and the part due to stiffening are computed by means of an additional
fixed point iteration, which converges within a few iterations. Therefore, no large system of nonlinear equations has to be
solved, and no large Jacobian or stiffness matrix of a large nonlinear system has to be assembled during every time step.

References

[1] J. Gerstmayr. Comparison of the absolute nodal coordinate and the floating frame of reference formulation by means of a simplified strain
formulation. InProceedings of DETC’03 2003 ASME Design Engineering Technical Conferences, Paper Number VIB-48306, ASME, New York,
2003.

[2] J. Gerstmayr. The absolute nodal coordinate formulation with elasto-plastic deformations. InProceedings of the Multibody Dynamics 2003
conference, J.A.C. Ambrósio (Ed.), IDMEC/IST, Lisbon, Portugal, 2003.

[3] J. Gerstmayr and J. Schöberl. A 3D finite element approach to flexible multibody systems. In Eberhardsteiner Mang, Rammerstorfer, editor,
Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna University of Technology, Austria, 2002.

[4] J. Gerstmayr and J. Schöberl. A 3D Finite Element Solver for Multibody Systems Based on Implicit Runge-Kutta Schemes. PAMM, Volume 3,
Issue 1, 2003, pp. 154-155.

[5] A.A. Shabana, A.M. Mikkola. Use of the finite element absolute nodal coordinate formulation in modeling slope discontinuity. Transactions of
the ASME, Volume 125, 2003, pp. 342-350.

[6] A.A. Shabana.Dynamics of Multibody Systems. Cambridge University Press,2nd edition, 1998.
[7] O. C. Zienkiewicz and R. L. Taylor.Volume 2 – solid mechanics. Butterworth Heinemann, London, 2000.


