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Summary 
A recursive formulation of the dynamical equations of an articulated multibody system with flexible 
components is given in terms of efficient motion variables for elastic motion and hinge rotation about 
revolute, Hooke and spherical joints. We treat motion under external forces, as well as prescribed motion 
with internal loads calculation, and show computational efficiency of the formulation with examples. 
 
Introduction     
Simulations of large overall motion of a hinge-connected multibody system with elastic components tend to 
be computationally intensive.  Recently, Banerjee [1] reviewed methods of reducing computer time that 
include defining new motion variables and using recursive or parallel algorithms. Mitiguy and Kane [2] had 
given a choice of generalized speeds that reduce simulation time for a system of rigid bodies with rotation 
in revolute, Hooke, and revolute joints. D’Eleuterio and Barfoot [3] proposed a variable for describing 
elastic motion that yields a constant mass matrix for a single flexible body in large overall motion. This 
paper uses these motion variables to modify the recursive formulation of Ref. [4] for a system of hinge-
connected flexible bodies. The formulation is also extended to situations where some or all of the degrees 
of freedom at a joint are prescribed, as when determining internal loads.  Examples demonstrate the 
computational efficiency of the formulation. 
 
Single Flexible Body in Large Overall Motion   
Using generalized speeds ui representing orthogonal components of angular velocity of a reference frame 
and the velocity of a point fixed in that frame, with vibration mode variables of Ref. [3], the velocity of a 
material point and the kinematical equations for n modal coordinates can be shown to be 
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Kane’s dynamical equations [5] for a body with potential energy P and dissipation function D are 
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Eqs. (3) lead to the same equations as those obtained in Ref. [3] by using Hamilton’s principle with 
quasicoordinates.  Eqs. (1) and (3) reveal that the mass matrix in Eqs. (3) is time-invariant. Rotation-
deformation coupling in Eqs. (2) produces contributions to generalized active force due to elasticity, 
geometric stiffening, and dissipation in Eqs. (3) for rotational as well as modal generalized speeds.  
 
Kinematics of Hinge Motion in Flexible Multibody Systems 
Angular velocity ωωωωj of the reference frame of body j connected to inboard flexible body c(j) is written after 
accounting for elastic rotation rate at the hinge of body c(j) in its reference frame.  Following Ref. [2] for a 
Hooke’s joint, with generalized speeds u1 and u2, hinge vectors h1and h2, and unity dyadic U, this yields 
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Revolute joint kinematics is a reduction of Eq. (4). Generalized speeds for a spherical joint are body 
components of angular velocity and those for slider joints are relative translational rates.  These generalized 
speeds require modifying the kinematics in the algorithm of Ref. [4], with the dynamical equations 
generated in a sequence of forward, backward, and forward passes. When a generalized speed at a hinge is 
prescribed, the associated internal load is obtained by dot-multiplying the augmented inertia and active 
torques and forces by the partial angular velocity or partial velocity [5] for the prescribed joint motion.  



  
Simulation Results 
Large angle slewing of a single flexible body, a solar sail spacecraft with 44 elastic modes, is simulated by 
the above formulation and compared to Standard Kane and recursive methods using customary generalized 
speeds (time derivatives of translational, rotational and modal generalized coordinates).  Identical results as 
in Figs. 1 and 2 are obtained for this 50 degrees of freedom (dof) system for a 300 sec simulation.  
Method:        Standard Kane    Recursive (Customary Variables)          Recursive (Efficient Variables) 
CPU Times:        699 sec                        667 sec                                                         140 sec  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Solar sail large angle slewing   Fig. 2 Sail boom tip deflection with bang-bang torque 
 
Figures 3 shows four flexible bodies connected by three types of rotational joints, and Figure 4 overlays 
plots of an internal load computed by the three methods. A 10 sec simulation of this articulated 52 dof  
system requires the following computation times.   
Method:        Standard Kane    Recursive (Customary Variables)          Recursive (Efficient Variables) 
CPU Times:        10.2 sec                        7.6 sec                                                         5.2 sec 

   
Fig. 3 Four flexible bodies with revolute, Hooke, and ball joints      Fig. 4 Load for a prescribed rotation 
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