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Summary Mechanical systems of both rigid and elastic bodies are considered. Differential-algebraic equations (DAE) of their motion 
and a technique of elimination of the algebraic part to obtain ordinary differential equations (ODE) are discussed. 
 

INTRODUCTION 
 

The most common case of coupling rigid and elastic 
bodies 1 and 2 assumes employing DAE like these: 
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with mass matrices Mi, generalized forces fi and coordi-
nates xi of the two bodies. Constraints g result in reac-
tion forces λGT

i  with Jacobian matrices T
ii xgG ∂∂=  

and undefined Lagrangian multipliers λ: dim λ = dim g. 
DAE introduce additional difficulties into numerical 
investigations such as problems of constraint violations. 
They can be successfully solved using special methods, 
e.g. [5]. However in many cases it is possible to avoid 
DAE, for example, in the finite element method (FEM). 

 
THE ASSEMBLING PROCEDURE IN FEM 

 
Let us consider two finite elements shown as beams in 
Fig. 1. Let 1st FE’s nodal coordinates are divided on two 
parts x1 and x2, while those for 2nd one are x3 and x4, so 
that x2 and x3 are compatible (the elements can be 
linked in these variables). 
 
 
 
 
 
 
 

Equations of motion of the two elements are: 





+=+
=+

)(2222121

1212111

RfxMxM
fxMxM

&&&&

&&&&
 





=+
−=+

4444343

3434333 )(
fxMxM

RfxMxM
&&&&

&&&&
 

)( 32 ∗=≡ xxx  
with mass matrices Mij, generalized forces fi and reac-
tion forces R. Terms in brackets appear when the 
elements are joined as shown in Fig. 1. The equations 
have DAE form (1) but the constraints are trivial. 
Eliminating R from the second and third equations and 
accounting the fifth one leads to ODE 

where the whole system mass matrix and generalized 
forces are composed of that for separated elements. 
Further we will use this idea to assemble rigid and 
elastic bodies to each other. 

 
Compatible coordinates of rigid and elastic bodies 
The possibility of eliminating constraint equations 
depends on compatibility of coordinates of rigid and 
elastic bodies (x2 and x3 above). Rigid bodies usually 
have rotation angles as generalized coordinates: e.g. φ in 
2D case or any triplet α, β, γ in 3D case. 
We consider large displacement finite-element formula-
tions for simulation of elastic bodies. One of them is the 
large rotation vector formulation [3], which employs 
absolute rotation angles. For example, plane beam 
elements in Fig. 1 have the following structure of 
generalized coordinates: xi = {xi, yi, φi}T, where xi and yi 
are absolute Cartesian coordinates of i-th node while φi 
is the absolute rotation angle of the beam cross section. 
3D beam and plate elements in this formulation [2] have 
nodal coordinates like these: xi = {xi, yi, zi, αi, βi, γi}T. 
Obviously, these finite elements can be easily assem-
bled with rigid bodies due to coordinate compatibility. 

 
FEM formulations with incompatible coordinates 
Another large displacement finite-element approach is 
the absolute nodal coordinate formulation (ANCF). The 
structure of nodal coordinates for beam elements in this 
method is as follows (cf. Fig. 1 and 2): xi = {ri

T, τi
T}T, 

where ri and τi are the absolute radius vectors and the 
slope vectors. This approach leads to a constant mass 
matrix and zero centrifugal and Coriolis inertia forces, 
in contrast to other large displacement formulations [6]. 
It is clear that attaching a 2D rigid body to such an 
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Figure 2. Rigid body attached to a beam element
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Figure 1. Assembling two finite elements
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ANCF beam element [7] leads to the constraint equation 
( )XY ττϕ arctan=  (2)

and, therefore, to differential-algebraic equations (1). 
To eliminate the constraints we must make the rigid 
body coordinates compatible to that for beam element: 

TTT },{ τrx = . (3)
We introduce four scalar coordinates for planar rigid 
body and must redevelop its equations of motion [7]. 
Angular velocity of the body is derived from (2): 

2

T~

τ
ϕω τIτ&
& == , where 








+

−
=

01
10~I , 222

YX τττ += . 

Velocity vector of an arbitrary point ρ of the body is 
xΦρωrv && =+= ~ , 

where the velocity transformation Jacobian matrix 
[ ]T~

τωρIIΦ &=  is introduced, 2~ τω τIτωτ =∂∂= && . 
Then, we use the principle of virtual work 

0d)(δ T =−∫V
Vgar µ  (4)

with virtual displacement xΦr δδ =  and acceleration 

xΦxΦva &&&&& +==  of a body point ρ. Integration in the 
body volume V is assumed. µ is the body mass density 
while g is the gravity acceleration. 
Equations of motion (4) take the matrix form 

gravinert ffxM =+&& , (5)
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Here m is the body mass, ρC is the position of the body 
mass center in axes XY and IA is the body mass inertia 
moment (both with respect to the attachment point A). 

 
Attaching a rigid body to ANCF plate element 
There are implementations of plate elements in ANCF 
proposed by various authors [4], [1]. All of them use, 
similarly to 2D beam elements, absolute nodal radius 
vectors and slopes as generalized coordinates (Fig. 3): 
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In paper [8], coupling rigid body and plate was simu-
lated using DAE technique (1). This work first handles 
this problem as a constraint-free one.  
We use the approximate matrix of directing cosines 
composed of the almost orthonormal vectors: 

[ ]321 τττA ≈ , where 213
~ τττ =  is the normal 

vector. The skew-symmetric tensor of angular velocity 
T
33221

T
22
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11

T )~~(~ τττττττττAAω &&&&& −++==  and the matrix 

[ ]132231
~~ τIτIIΦ ∗∗∗∗ +−= ρρρρ  are found after that. 

The values ρτT
kk =

∗ρ  correspond to local components 
of the radius vector ρ of a point of the body. 
After some cumbrous calculations we obtain equations 
of motion of the body in the form (5) with 
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Here ρk are components of the radius vector of the body 
mass center while Iij are components of the body inertia 
tensor in the coordinate system with orts τ1, τ2, τ3. 

 
CONCLUSIONS 

 
Simulation of coupled rigid and elastic bodies can be 
handled as a constraint-free problem. This was shown in 
this paper by giving examples of beam and plate ele-
ments attached to a rigid body without relative degrees 
of freedom. However this technique can be generalized 
to any kind of joints between the bodies. 
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Figure 3. Rigid body attached to a plate element


