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Summary. A systematic geometrical framework for effectimedeling and simulation of nonholonomic systemgresented. Using
this powerful means of analysis, different typeseqtiations of motion in dependent and independariables are obtained in
compact matrix forms. Some other relevant aspette -€onstraint violation problem, the involvemehtndependent velocities and
their initial values, and the determination of doaisit reactions — are also addressed. Some exarapaeported.

INTRODUCTION

Many textbooks and even modern studies on analydig@gamics, and especially those devoted to théysisaof non-

holonomic (NH) systems, are strongly influencedvayious historical approaches and the mathemadieatription

which are rather arduous in practical/computer iappibns. A large variety of formulations for NHs$gms [1-3] may
sometimes be furthermore misleading — one can rehade off the feeling that some of them had be&nduced only
to solve a specific problem, and one may sometimags difficulty in choosing the proper/best metidten solving his
own problem. A frequent belief is also that dispar@pproaches to H and NH should be used. Thisegrtsuth only in

one way — the original formalism of Euler and Lagya developed for H systems had indeed been fowapplicable to
solving NH system problems [1]. The methodologiegafoped for NH systems are however valid for Hesys as well
[4-6], and a unified treatment of systems subjecHtand/or NH is possible. A legitimate means afganting these
problems in a systematic way is to illustrate thegrometrically [6,7].

The aim of this contribution is to present a systéengeometrical framework for effective modelingdasimulation of

NH systems. Different types of equations of motinrdependent and independent variables are obtamedmpact

matrix forms. Some other relevant aspects — thstcaint violation problem, the involvement of inégylent velocities
and their initial values, and the determinatiorcofistraint reactions — are also addressed. Sorssicdhexamples of
NH systems serve as an illustration of the conatitars.

MODELLING OF NONHOLONOMIC SYSTEMS

The starting point is an-degree-of-freedom system defined in generalizestcinatesp =[p, ... p,]' and velocities
v=[v,...v,]", whose kinematical and motion equations pare A(p)v and M (p)V +d(p,v) =f(p,v t). The system
can be viewed as a generalized particle on-dimensional manifoldi. Then-dimensional tangent spade” =T (4 )
to.#at pO.4 is an Euklidean (linear vector) space, aihds the metric tensor matrix of the basis referred o E" .
By imposingm H and| NH constraints (bilateral and scleronomic for simplicity) the system,®(q) =0 and
C..(p)v =0, respectively, the attainable configuration is confined kedamensional k = n—-m )manifold #; while
the degrees of freedom reducerte n—(m+1) =k -1 . A set of independent generalized coordinates[q, ... g,]"
can then be introduced to define the system positian@s¢ . Thek-dimensional tangent spaceoat q[0.# is then
E“=T,(x), and the metric tensor of the basis referredjton E* is M =D'M D, arising ink dynamic equations
M(9)§ +d(qg,q) =(g,6,t) obtained using the explicit forms of H constradguations:p =g(q )= v=D(Q)q =

v =D(q)d +7y(q,q) [6]. Due to NH constraintsE* splits into arr-dimensional subspadg " of admissible velocities
and anl-dimensional subspac¥' where the system velocity vanishes. Introducedtao$ independent velocities
u=[u,...u]" and the explicit forms of NH constraint equatiogss D(q)u = ¢ = D(q)u +7¥(q,u), the minimal-
form governing equations of a NH system arisekasr ordinary differential equations (ODEs) = D(q)u and
M (g)u +d(g,u) =f(q,u,t) , whereM = D"M D is the metric tensor matrix of the basis refeteed in U " .

The above concepts from differential geometry dredassociated matrix formulation constitute a Ugmfojective ap-
proach [6] to the modelling of NH systems. By ajmuiythis geometrical framework, different typeswdtion equations
can be obtained, which, depending on the statabias used, can be grouped as follows.

® When using the dependent stgteandv, the motion equationg =Av andM v+d =f —C"A are supplemented
by the constraint equations either in the origimatime-differentiated forms. The obtained diffeiahalgebraic
equations (DAESs) can either be solved directly biypg the DAE solvers or, after explicit/implicitirination of
Lagrange multipliersk , by using the standard ODE integrators.

@ Another possibility is to exclude H constraintséiéens from evidence and formulate the motion eiquatin
independent coordinates(the velocitiesq are dependent). The reduced motion equatMris+d =f - C| A,
are now supplemented by only NH constraints withagigns rewritten toC ,,(q)¢ = 0. Again, the arising DAEs
can be solved directly by using the DAE solvergtggrated indirectly with ODE methods.

® The final possibility is to use the independentestaariablesy andu as defined above. The obtained minimal-
form equations of motioj = Du andM u +d =f are pure ODEs in the same number of state vasgaadu.

The details of these formulations and their advgagéshortcomings will be the matter of the planmexsentation.



OTHER RELEVANT ASPECTS

There are at least four important aspects reled@nmodeling and simulation of NH systems in pradtapplications.

= The constraint violation problem relates to thoseniulations of grougD and @ in which the constraint equa-
tions are involved in the time-differentiated forriisie problem can conveniently be solved by udiggeomet-
rical schemes developed in [8], which consist iprapriate corrections of the dependent state vimsado that to
eliminate the constraint violations after each stemtegration or a sequence of steps.

= |n formulation® independent velocitias are involved. The way they are defined, and thg tiva explicit forms
G=D(g)u and § = D(q)u +7¥(q,u) of NH constraints are obtained will be explainadtie presentation. The

other related problem is the determination of prapiial values ofu as these may be kinematical parameters of

no physical relevance.

= |n the reduction procedures leading to formulati@snd ®, respectively the H and both H and NH constraint
reactions are excluded from evidence. A novel nutlos determination of the constraint reactionsturaly
associated with the reduction procedures, will tes@nted. The arising codes are simple and thdraeriseac-
tions are obtained in a “resolved” forms, convehirrboth symbolic manipulations and computer aggiions.

= A closely connected problem is “physical” formutati of constraint equations so that the associategtdnge
multipliers appearing in mathematical modellingfbeees and moments in physical sense. Each comisequa-
tion must also precisely express/describe a spécifanishing translation/velocity.

ILLUSTRATIVE EXAMPLES

Two classical examples of honholonomic systemsvjllpe reported as illustration. In the first ofieg. 1), a sharp-edged
homogeneous disc that rolls without sliding ontibézontal plane is considered. The disk is sulifecne H and two NH
constraints. As distinct from many standard forroifes, the thickness of the disc can be includedddel it as a coin, and
the rolling resistance can be considered which mlieH constraint nonideal. The other exampleagan of a sphere on
the inside of a rough vertical cylinder (Fig. 2)géin, one H and two NH constraints are imposechersphere. One of
the observations deduced analytically in [1] are fhllowing features of the motion. Looking on timtion “from
above” (along axis), the sphere center moves on a circle withresstant angular speed. However, the “side-vievgbis
that the mass center describes a sinusoid patheoside cylinder surface. The motion corresponds paradoxical
behavior of a basketball which, when rolling on Hasket ring, often goes up and falls out of thekba This character
of the sphere motion will be approved by numersialulation.
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Fig. 1. Therolling disc. Fig. 2. A sphere moving inside a rough cylinder.
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