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Summary. A systematic geometrical framework for effective modeling and simulation of nonholonomic systems is presented. Using 
this powerful means of analysis, different types of equations of motion in dependent and independent variables are obtained in 
compact matrix forms. Some other relevant aspects – the constraint violation problem, the involvement of independent velocities and 
their initial values, and the determination of constraint reactions – are also addressed. Some examples are reported.  

 
INTRODUCTION 

 
Many textbooks and even modern studies on analytical dynamics, and especially those devoted to the analysis of non-
holonomic (NH) systems, are strongly influenced by various historical approaches and the mathematical description 
which are rather arduous in practical/computer applications. A large variety of formulations for NH systems [1-3] may 
sometimes be furthermore misleading – one can never shake off the feeling that some of them had been introduced only 
to solve a specific problem, and one may sometimes have difficulty in choosing the proper/best method when solving his 
own problem. A frequent belief is also that disparate approaches to H and NH should be used. This proves truth only in 
one way – the original formalism of Euler and Lagrange developed for H systems had indeed been found inapplicable to 
solving NH system problems [1]. The methodologies developed for NH systems are however valid for H systems as well 
[4-6], and a unified treatment of systems subject to H and/or NH is possible. A legitimate means of presenting these 
problems in a systematic way is to illustrate them geometrically [6,7].  
The aim of this contribution is to present a systematic geometrical framework for effective modeling and simulation of 
NH systems. Different types of equations of motion in dependent and independent variables are obtained in compact 
matrix forms. Some other relevant aspects – the constraint violation problem, the involvement of independent velocities 
and their initial values, and the determination of constraint reactions – are also addressed. Some classical examples of 
NH systems serve as an illustration of the considerations.  
 

MODELLING OF NONHOLONOMIC SYSTEMS 
 
The starting point is an n-degree-of-freedom system defined in generalized coordinates T

npp ][ 1 �=p  and velocities 
T

nvv ][ 1 �=v , whose kinematical and motion equations are vpAp )(=�  and ),,(),()( tvpfvpdvpM =+� . The system 
can be viewed as a generalized particle on an n-dimensional manifold �. The n-dimensional tangent space )(�p

n TE =  
to � at �∈p  is an Euklidean (linear vector) space, and M is the metric tensor matrix of the basis referred to v in nE . 
By imposing m H and l NH constraints (bilateral and scleronomic for simplicity) on the system, 0q

�
=)(  and 

0vpC =)(nh , respectively, the attainable configuration is confined to a k-dimensional ( )mnk −=  manifold �, while 
the degrees of freedom reduce to lklmnr −=+−= )( . A set of independent generalized coordinates T

kqq ][ 1 �=q  
can then be introduced to define the system position as �∈q . The k-dimensional tangent space to � at �∈q  is then 

)(�q
k TE = , and the metric tensor of the basis referred to q�  in kE  is DMDM T= , arising in k dynamic equations 

),,(),()( tqqfqqdqqM ���� =+  obtained using the explicit forms of H constraint equations: )(qgp =  � qqDv �)(=  � 
))( q� (q,qqDv ���� +=  [6]. Due to NH constraints, kE  splits into an r-dimensional subspace rU  of admissible velocities 

and an l-dimensional subspace lV  where the system velocity vanishes. Introduced a set of independent velocities 
T

ruu ][ 1 �=u  and the explicit forms of NH constraint equations: uqDq )(=�  � )()( uq,�uqDq += ��� , the minimal-
form governing equations of a NH system arise as rk +  ordinary differential equations (ODEs) uqDq )(=�  and 

),,(),()( tuqfuqduqM
��

�
�

=+ , where DMDM T=
�

 is the metric tensor matrix of the basis referred to u in rU .  
The above concepts from differential geometry and the associated matrix formulation constitute a useful projective ap-
proach [6] to the modelling of NH systems. By applying this geometrical framework, different types of motion equations 
can be obtained, which, depending on the state variables used, can be grouped as follows.  

���� When using the dependent states p and v, the motion equations vAp =�  and �CfdvM T−=+�  are supplemented 
by the constraint equations either in the original or time-differentiated forms. The obtained differential-algebraic 
equations (DAEs) can either be solved directly by using the DAE solvers or, after explicit/implicit elimination of 
Lagrange multipliers � , by using the standard ODE integrators. 

���� Another possibility is to exclude H constraints/reactions from evidence and formulate the motion equations in 
independent coordinates q (the velocities q�  are dependent). The reduced motion equations nh

T
nh �CfdqM −=+��  

are now supplemented by only NH constraints with equations rewritten to 0qqC =�)(nh . Again, the arising DAEs 
can be solved directly by using the DAE solvers or integrated indirectly with ODE methods.  

���� The final possibility is to use the independent state variables q and u as defined above. The obtained minimal-
form equations of motion uDq =�  and fduM

��
�

�
=+  are pure ODEs in the same number of state variables q and u. 

The details of these formulations and their advantages/shortcomings will be the matter of the planned presentation. 



OTHER RELEVANT ASPECTS 
 
There are at least four important aspects relevant the modeling and simulation of NH systems in practical applications.  

���� The constraint violation problem relates to those formulations of group ���� and ���� in which the constraint equa-
tions are involved in the time-differentiated forms. The problem can conveniently be solved by using the geomet-
rical schemes developed in [8], which consist in appropriate corrections of the dependent state variables so that to 
eliminate the constraint violations after each step of integration or a sequence of steps.  

���� In formulation ���� independent velocities u are involved. The way they are defined, and the way the explicit forms 
uqDq )(=�  and )()( uq,�uqDq += ���  of NH constraints are obtained will be explained in the presentation. The 

other related problem is the determination of proper initial values of u as these may be kinematical parameters of 
no physical relevance.  

���� In the reduction procedures leading to formulations ���� and ����, respectively the H and both H and NH constraint 
reactions are excluded from evidence. A novel method for determination of the constraint reactions, naturally 
associated with the reduction procedures, will be presented. The arising codes are simple and the constraint reac-
tions are obtained in a “resolved” forms, convenient in both symbolic manipulations and computer applications.  

���� A closely connected problem is “physical” formulation of constraint equations so that the associated Lagrange 
multipliers appearing in mathematical modelling be forces and moments in physical sense. Each constraint equa-
tion must also precisely express/describe a specified vanishing translation/velocity.  

 
ILLUSTRATIVE EXAMPLES 

 
Two classical examples of nonholonomic systems [1] will be reported as illustration. In the first one (Fig. 1), a sharp-edged 
homogeneous disc that rolls without sliding on the horizontal plane is considered. The disk is subject to one H and two NH 
constraints. As distinct from many standard formulations, the thickness of the disc can be included to model it as a coin, and 
the rolling resistance can be considered which makes the H constraint nonideal. The other example is motion of a sphere on 
the inside of a rough vertical cylinder (Fig. 2). Again, one H and two NH constraints are imposed on the sphere. One of 
the observations deduced analytically in [1] are the following features of the motion. Looking on the motion “from 
above” (along z axis), the sphere center moves on a circle with a constant angular speed. However, the “side-view” is so 
that the mass center describes a sinusoid path on the side cylinder surface. The motion corresponds to a paradoxical 
behavior of a basketball which, when rolling on the basket ring, often goes up and falls out of the basket. This character 
of the sphere motion will be approved by numerical simulation.  
 

 
Fig. 1.  The rolling disc. 
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Fig. 2.  A sphere moving inside a rough cylinder. 
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