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Summary The advent of various foams with negative Poisson's ratio has interested us in how these foams will behave when they are
saturated with fluid. To explore this behavior, we have solved 2D and 3D versions of the Mandel and Cryer problems in a unified
manner. The results show that much more remarkable Mandel-Cryer effect and additional interactions between the elastic
deformation and pore fluid diffusion are observed for the negative Poisson's ratio than for the conventional one.

INTRODUCTION

It has been well known that the value of Poisson's ratio thermodynamically ranges from -1.0 to 0.5 for isotropic linear
elastic materials, although the negative ratios are counterintuitive and real conventional isotropic materials have the
positive ratios. In 1987, Lakes [1] created polymer and metal foams having negative Poisson's ratios and, following this
creation, he and his coworkers have explored various characteristics of such materials and discussed their
microstructures and their real and possible applications.
This advent of foamed polymers and metals with negative Poisson's ratios have stirred our interest and imagination in
how these unconventional foams will behave and what phenomena their negativeness will bring when they are fully
saturated with fluid. To explore these behavior and phenomena, we picked up the four problems: the original Mandel
problem [2] and a corresponding axisymmetric problem, and the original Cryer problem and a corresponding plane
strain problem. We call these four problem "2D and 3D, Mandel and Cryer problems." We selected these four problems
among many other problems because we expected that they manifest most remarkable interactions between the elastic
deformation of sample skeletons and pore fluid flow. We analytically solved these problems in the Laplace transform
space in a unified manner and numerically inverted the solutions into the real time space.

FOUR PROBLEMS TO SOLVE

To describe the problems, we introduce the Cartesian, cylindrical polar and spherical polar coordinate systems: ( , )x z
( , , )r zθ  and ( , , )r ϕ θ . The four problems are presented in Fig.1 together with their boundary conditions, where only the
statically equivalent, lower halves of a circular cylinder and a sphere in the Cryer problems are shown to make it more
convenient to discuss the results of solutions. For all problems, the initial conditions are that all variables are zero at
time t = 0 and the loading is a step-like one; in addition, the basic equations applicable for an irrotational displacement
field are used. In the figure, σ π0 0

2= P a/( ) , which means the average axial compressive stress for the Mandel problem
and pressure loading on the surface for the Cryer problem.

SOLUTIONS IN LAPLACE TRANSFORM SPACE

Only the solutions for the 2D Cryer problem are presented here, for the economy of space and because they have not
seen in literature.
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where ν  and ν u are Poisson’s ratios in the drained and undrained states; B  denotes Skempton’s coefficient and c  the
coefficient of pore fluid diffusion. The bar over variables means the Laplace transform with its parameter s . With all
other notations, see Fig.1.

RESULTS AND DISCUSSIONS

Numerical calculations have been carried out only for the incompressible constituents model (ν u B= =0 5 1 0. , . ),
because the bulk modulus of drained foams is much smaller than that of pore fluid (e.g., water) and skeleton material
(e.g., polyester and cupper). In all figures, ρ = r a/  and τ = t a c/( / )2  are the nondimensional radial coordinate and time.



The Mandel-Cryer effect for the four problems is shown in the
case ofν = −0 8.  in Fig.2. We can see from it that the effect is very
remarkable for this negative Poisson’s ratio and that the peak
pressure is higher for the Cryer problems than for the Mandel
ones and for the 3D problems than for the 2D ones. The analysis
shows that the Mandel-Cryer effect is more remarkable for
decreasing Poisson’s ratio. It is also shown that the peak
pressures in the limit ν = −1 for the Cryer and Mandel problems
are 2.5 and 2.0 times those immediately after loading,
respectively. In what follows, we will focus on the 3D Mandel
problem, because it corresponds to usual compression tests of a
circular cylinder. Fig.3 shows variation with time of
circumferential stress component −σθ  for various radius
positions. At very deep positions, that stress starts from zero, goes
up to the peak, and then decreases and vanishes, as corresponds to
the variation of pore fluid pressure. In contrast, at the shallow
positions it has the minimum value at some time after loading. It
must be noted that its initial value is zero for ρ < 1 while
− = − − +σ σ ν ν ν νθ / ( ) /( )( )0 1 1u u  at ρ = 1, which is not zero; there
exists a discontinuity at the cylinder surface. The same things
appear in axial stress −σ z . Similar behavior is also seen for the
Cryer problem, as may be understood from the halved disc and
sphere in Fig.1.
Figure 4 depicts time variation of radial displacement ur  at the
cylinder surface for various Poisson’s ratios. It is found that the cylinder of negative Poisson’s ratio under abrupt

compression expands just after loading, gradually
shrinks, and finally becomes slenderer than the original
one, as is interesting and intuitively well understandable.
It should be added that this displacement is normalized
by using Young’s modulus, which are reported to
decrease with decreasing Poisson’s ratio but its decrease
is not so big.

CONCLUSIONS

We have demonstrated various interesting behaviors of
fluid-filled poroelastic samples with negative Poisson’s
ratio.

References
[1] Lakes, R., Science, 237, 1038-1040 (1987).
[2] Mandel, J., Geotechnique, 3, 287-299 (1953).

0.0

0.5

1.0

1.5

2.0

2.5

0.001 0.010 0.100 1.000 10.000 100.000

νu=0.5
B=1.0

ν=-0.8

3D-Mandel

2D-Mandel

3D-Cryer

2D-Cryer

p(
0,
τ)

 / 
p(

0,
0+

)

τ=t/(a2/c)

Figure 2  Mandel-Cryer effect for four problems
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Figure 3  Hoop stress for various positions Figure 4  Radial displacement at the cylinder surface

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.001 0.010 0.100 1.000 10.000 100.000

u r
(1

, τ
) 

/ 
(a

(P
0
/π

a2
)/

E
)

τ=t/(a2/c)

ν=0.4

0.0

-0.4

-0.8

3D Mandel

νu=0.5
B=1.0

σ0H(t)σ0H(t)

2D and 3D Mandel Problems

2D and 3D Cryer Problems
P0H(t)

P0H(t)P0H(t)

P0H(t)

a

a a

2a

rr

x=a: σx=0, p=0 r=a: σr=0, p=0

r=a: σr=-σ0H(t), p=0 r=a: σr=-σ0H(t), p=0

Figure 1  Four problems to solve
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