
XXI ICTAM, 15–21 August 2004, Warsaw, Poland

A MICROMECHANICAL MODEL FOR SINGLE-CRYSTAL SHAPE-MEMORY-ALLOYS
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SummaryThis work is dealing with solid to solid phase transformations in shape-memory-alloys and the simulation of the characteristic
phenomena, e.g. pseudoelasticity and the shape-memory-effect. In particular it focuses on the micromechanical behaviour of the
material like the appearance of microstructures.

The mechanical model is based on the idea of combining energy densities of several martensite and one austenite phase
to an averaged energy density of the mixture within a representative volume element (RVE). Let us assume that we want
to simulate the behaviour of shape-memory-alloys like Indium-Thallium (InTl), which undergo a cubic to tetragonal
transformation. According to [1] we have to take 3 martensite variants in account.
The averaged energy density of the representative volume element can be written as

ψ̄ =

(
1−

3∑
i=1

βi

)
WA(ε) +

3∑
i=1

βiWMi(ε) (1)

whereWA is the free energy of the austenite phase andWMi
is the free energy of the martensite varianti. The phase-

energies are adopted from a thermomechanical approach by Frémond [3] and consist only of physically well defined
properties, e.g. the fourth-order isotropic material tensor or the heat-expansion-coefficient. The symbolsβi represent the
volume fraction of the martensite varianti and can be treated as internal variables from the mechanical point of view.
Regarding allβi as minimizers of the energy functional will lead us to a non-quasiconvex problem as shown in [4]. This
can be avoided by the assumption of an inhomogenous distribution of the strainε which constitutes a microstructure. We
assume a certain microstructure which is inspired by those found in micrographs [2] as shown in fig.1(left). It consists of
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Chunhwa Chu and Dick James also at the U of M have taken some great pictures of twin domains in martensites
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Figure 1. micrograph of martensite twins (left) and assumed microstructure (right)

alternating regions of austenite and martensite, which are repeated periodically. These regions, which are called laminates,
are orientated along a directionnA. The martensite-laminate itself consists of the three different variants, which are
supposed to be arranged in laminates too and orientated along a different directionnM (see fig.1,right). We assume
deformation-states in the different laminates, which are compatible at the interfacial boundaries and, integrated over the
whole RVE, equivalent to the homogenous macroscopic deformations, as follows:

εA := ε−

(
3∑

i=1

βi

)
(uA ⊗s nA) (2)

εi :=


ε +

(
1−

3∑
i=1

βi

)
(uA ⊗s nA) + β3 (ui ⊗s nM ) , if i = 1 . . . 2

ε +
(

1−
3∑

i=1

βi

)
(uA ⊗s nA)−

2∑
j=1

βj (uj ⊗s nM ) , if i = 3
(3)

with uA ⊗s nA := uA ⊗ nA + nA ⊗ uA. The averaged energy density can now be written as

ψ̄ =

(
1−

3∑
i=1

βi

)
WA(εA) +

3∑
i=1

βiWMi
(εi) . (4)



The variablesuA,u1,u2 are considered as minimizers of the averaged energy density. This minimization process yields
the relaxed energy functional

ψR1 = WA(ε) +
3∑

i=1

βi c− α τ̄ : ε + GR1 (β,nA,nM ) (5)

with

GR1 (β,nA,nM ) = −α

[(
1−

∑
i

βi

)
uA · τ̄ · nA + β1 β3 u1 · (τ 1 − τ 3) · nM + β2 β3 u2 · (τ 2 − τ 3) · nM

]
(6)

The remaining variables are related to dissipative energy terms. We can derive evolution equations from a given dissipation
functional∆(Ṗ), where the vectorP contains all remaining variables. The minimization of the total power expended in
the material leads us to the condition

Ṗ ∈ ∂J(Q)
∂Q

(7)

with the Legendre-transform of∆(Ṗ)
J (Q) := max

{
Q · Ṗ−∆; Ṗ

}
(8)

and

Qi := −∂ψR1

∂Pi
, i = 1 . . . 9 . (9)

We are now able to simulate the characteristic hysteretic behaviour of shape-memory-alloys. Fig.2 shows the results of a
homogenous uni-axial tension-test.
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Figure 2. results for the volume fractionβ1 and the stress componentσ11

For the analysis of structures we can apply the introduced algorithm to the FEM, where the local computation mentioned
above is done at every Gauss-Point. Fig.3 shows the results of a bending test of a 2D-structure.
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Figure 3. results for the volume fractionβ1 and the stress componentσ11
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