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SummaryStress-induced phase transitions in nonlinear elastic materials are analyzed within the framework of phase transition zones. A
procedure to examine the stability of piece-wise homogeneous two-phase deformation is developed. Spherically symmetric two-phase
deformation are studied in detail to demonstrate efficiency of the approaches developed.

INTRODUCTION

If phase transitions take place in some parts of a deformable body, interfaces which bound new phase areas can be
considered as surfaces across which the deformation gradientF is discontinuous at continuous displacements. Phase
boundaries of this kind appear in the case of martensite transformations. Related phenomena are shape memory effects,
localized orientation transformations in polymers (crazes, shear bands). On the whole, studies in this field direct toward
the development of the theoretical basis for using and creating smart materials and structures.
The analysis of the conditions on the equilibrium interface [1, 2, 3] leads to the concept of phase transition zones (PTZ)[4].
The PTZ is formed in strain-space by all deformations which can exist on the equilibrium interface. Since the equilibrium
two-phase deformations can be supported by a nonlinear elastic material only if ellipticity fails at some deformations
[5], the PTZ is crossed by the non-ellipticity sub-zone. The PTZ boundary acts as a phase diagram or yield surface in
strain-space. With the aid of the PTZ construction, what kind of phase boundaries will appear and when they can appear
are determined entirely by properties of the strain energy function and the deformation path.
Since the PTZ results from the analysis of the local equilibrium conditions, every point of the PTZ corresponds to some
equilibrium piecewise-homogeneous two-phase deformation. That is why we develop a procedure to examine the stability
of such deformations. The other important reason follows from the fact that if a two-phase deformation in a non-linear
elastic body is a local energy minimizer, then given any pointp0 of the interface, the piece-wise homogeneous deformation
corresponding to the two valuesF±(p0) is a global energy minimizer [3]. Thus, instability of the latter state would imply
instability of the former state.
In this paper the stability of the piece-wise homogeneous deformation is investigated with the aid of two test criteria. One
is a kinetic stability criterion developed for the case of small strains in [7]: the two-phase state is unstable if superim-
posed perturbations grow. Our analysis draws upon recent results obtained in [8] for the half-space problem. The other
criterium is the energy criterion. We compare the total energies corresponding to the two-phase piece-wise homogeneous
deformation and to the perturbed inhomogeneous deformation.
Then we study some aspects of boundary value problems for bodies undergoing phase transformations. Usually the
equilibrium two-phase solution is non-unique and can be meta-stable or unstable, and global minimizers of the total
energy are not the only ones that are of interest from the physical point of view. Locally stable solutions can also be met
in physical reality. Then the choice of the solution in a static approach can be made on the base of the stability analysis
and estimations of energy changes due to phase transformations.
To discuss the problems we consider the equilibrium spherically symmetric two-phase deformation of a nonlinear elastic
isotropic material. We develop a general procedure to construct the solution for a material with an arbitrary strain energy
function. Then we study phase transformations in a sphere made of the Hadamard material. We describe characteristic
features of the deformation fields in the equilibrium two-phase sphere for the obtained solutions in the context of the PTZ.
We show that the number of solutions can be predicted if the PTZ is constructed. Then we examine the stability. Finally,
we compare these results with the results obtained earlier by a small strain approach [7].

CONDITIONS ON THE EQUILIBRIUM PHASE BOUNDARY AND PHASE TRANSITION ZONES

The conditions on the equilibrium interface include the kinematic condition, traction continuity condition, and thermody-
namic condition [1, 2, 3]. The last two conditions can be rewritten as

(S(F + f ⊗m)− S(F))m = 0, W (F + f ⊗m)−W (F) = f · S(F)m (1)

whereF is the deformation gradient on one side of the interface,S is the Piola stress tensor,W is the strain energy
function,m is a unit normal to the interface. GivenF, the above equations can be considered as a system of four equations
for five unknowns:f andm. ThoseF for which this system of equations can be solved form thephase transition zone
[4]. In the case of isotropic materials the PTZ can be constructed in the space of principal stretchesλi, i = 1, 2, 3 [4, 6].
If the interface is perturbed and the thermodynamic equilibrium fails then in a quasi-static approach we replace (1)2 by

∂Γ
∂t

= −k([W ]− f · Sm̃), k > 0, (2)



where∂Γ/∂t is the normal speed of the interface, andm̃ is a normal to the perturbed interface. The evolution equation
(2) is motivated by the fact that the rate of energy dissipated as the interface traverses the material must be positive [9].
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The interface is given in the reference configuration by a parametric
form X = Y(s) (−∞ < s < ∞). The perturbed interface is given by
X = Y(s) + ξ(s, t). In a normal mode approach the perturbation is
of the form

Γ(s, t) = γeiK·X = γ(t)eis (Γ ≡ ξ ·m, K ⊥ m, |ξ| ¿ 1). (3)

The incremental displacement is sinusoidal along the interface and de-
cays away from the interface. Linearizing the right hand side of (2),
we obtain a linear differential equation of the form

−1
k

dγ

dt
= Lγ, (4)

By the kinetic stability criterion, the two-phase deformation is unsta-
ble if L < 0. Analogously to [8], linearizing the traction continuity
condition we obtain the expression for the interfacial impedance ten-

sorP . As a result it is found that two types of bifurcations are possible, with bifurcation conditions given bydet P = 0
anddetP 6= 0 butL = 0. It becomes clear the necessary and sufficient conditions for the energy increment to be positive
definite: (i) P is positive definite, and (ii)L > 0. Fig.1 shows the signs ofdetP andL in the case of the specified
Hadamard material. The normal to the primary interface is directed as the second eigenvalue of the strain tensor. Thenλ1

is continuous across the interface. The stability conditions are satisfied only forλ1 > 1.38, which is only a subset of the
λ1 values (namelyλ1 > 0.76) over which the pairwise homogeneous deformation is stable when viewed as joint-body
problem.
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Applying the general procedure to the sphere made of the Hadamard
material we demonstrate that two different equilibrium two-phase
states as well as a uniform one-phase state can be found. Fig. 2 shows
the PTZ cross-section by the planeλ1 = λ2 ≡ λΦ. The linesL1 and
L2 are the PTZ-boundaries. The pointsA,B andC,D represent the
jumps in deformations across the spherical interfaces for two solutions.
The thick lines characterize strains along the radius of the sphere. We
find the radius of the interface depending on the predicted external ra-
dius of the sphere, construct pressure–volume diagrams, study energy
changes and analyze how the stable and unstable solutions in the cases
of the Hadamard material and small strains relate with the PTZ.
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