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Summary In this paper, a model of martensitic transformation in TRIP steel was established in the framework of the continuous
mechanics and thermodynamics at a large strain. The model is based on the concept of a laminated microstructure composed of the
martensitic plate and austenite layer. The internal structure of the martensite and austenite composite is variable and changes with
moving interface. The model includes the essential features of the deformation induced martensitic transformation and provides a local
kinetics description of martensite growth. A distinctive feature of the current model is that each phase is characterized by its own
material constitutive model, and therefore, the evolution of the stress in both phases as the martensite transformation proceeds under a
given deformation gradient can be properly predicted.

INTRODUCTION

The aim is to develop a physically-based, multi-scale model to predict the structure-property relations in low alloyed multi-
component TRIP steel. It is suggested that a unique combination of high ductility and high toughness in this steel come
from both TRansformation Induced Plasticity (TRIP) and the synergy between the properties of multicomponents [1].
Therefore, the model should include the martensitic transformation, the plastic flow of the matrix phases, the plastic
flow of the parent phase and the interaction between the transformed region and its surroundings. A general scheme of
the multi-scale model is demonstrated in Figure 1. As a first step, this paper presents a model for deformation-induced
martensitic transformation at the micro-level in the framework of the continuous mechanics and thermodynamics.
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Figure 1. A general scheme of the multi-scale model for multi-component low alloyed TRIP steel.

KINEMATICS OF MARTENSITIC TRANSFORMATION AND DEFORMATION

A major feature of the martensitic transformation is its shape deformation, which can be observed as a surface relief effect
and has the characteristics of an invariant-plain strain. According to the phenomenological theory of the martensite crys-
tallography [2], the shape deformation, represented by total transformation deformation gldiengn be described
by:

Fo, =1+ MeN (1)
whereN is the habit plane unit normal and is the shape deformation vectdis the second order unit tensor.
Let the motion of a material point in a process of martensitic transformation be described by the deformation gradient
tensorF. We assume that the deformation gradient in the austenite can be multiplicatively decomposed into an elastic part,
F<S ., and a plastic parff'} . After martensite transformation it is possible to decompose the total deformation gradient

into a plastic deformation gradieRt; in austenitic phase, a transformatiolia}. and an elastic and a plastic deformation
gradientsF$,; andFY, in martensitic phase. Therefore,

Fa =FS -FB Fy = Fg, - FR, - Fy - FR )



THE MARTENSITIC TRANSFORMATION CRITERION

The local transformation criterion proposed by Fischer and Reisner [3] and Levitas [4] is applied as:
G=1[¢] —py - (P)T:[F] > Ge 3

where(P) = (Pa+Pw)/2 with P4 andPys being the first Piola-Kirchhoff stress tensors in the austenite and martensite
phases, respectivelll’] = Fa — Fu is the jump of the deformation gradient across the moving interfé¢és the jump

of the Helmholtz free energy across the interfaggjs the mass density of the austenit€' is the effective driving

force including both chemical and mechanical terms, acting at the material points on the moving interface, which can
be obtained by applying the jump condition across the interfateis the threshold value of the transformation barrier,
which includes the contributions from both phase transformation and plastic dissipation. It depends on not only the shape
deformation strain but also the history of the stress and strain variation during the transformation process. In this research
we assume thdt. is a material constant.

MODEL FOR DEFORMATION-INDUCED MARTENSITE TRANSFORMATION

The total deformation gradient tensBrat a transforming region is assumed to be known. As soon as the martensite
forms, this microregion can be treated to consist of austenite containing parallel layers of martensite plate. The parallel
interface separating the two constituents are characterized by the habit planeﬁdmbb reference configuration. As
martensitic transformation is an invariant plane strain deformation, therefore,

Fo-OI-N@N)=Fpm-(I-N&N) 4)
Assuming a quasi-static equilibrium state, the balance of linear momentum on the interface requires that:
Pa-N—-Py-N=0 (5)

The deformation and stress fields within each phase (layer) are assumed to be homogeneous. The given d&formation
and the first Piola-Kirchhoff stred3 at the transforming region is assumed to be distributed between the phases according
to the rule of mixtures

F=(1-¢Fa+¢{Fum P=(1-¢§)Pa+¢Pm (6)

Where¢ is the volume fraction of the martensite. Each phase is characterized by its own constitutive relations. A
finite strain logarithmic elasto-plastic constitutive relations [5] is assumed for austenite while elastic behavior is taken for
martensite

1
TA = f(CA71nBeAa A’V) ™ = §CM . lnBi,I (7)

WhereB$ andBg§, are the elastic left Cauchy-Green deformation tensors in austenite and martensite, respegtively;

and 7 are the Kirchhoff stress tensors in austenite and martensite, respectglyand Cy; are the fourth-order
tensors of material constant&:y is the increment of plastic flow in austenite. The standarglasticity model restricted

to isotropic hardening is applied to the austenite phase.

By solving system of equations constructed by (2)-(7), the martensite volume fraction and the stress evolution in each
phase during martensite growth can be obtained. The increment of the martensite apfiéaisadlculated in such a

way thatG = 0 (whereG is calculated with the updated values of the variablesPe B.etc.). If the calculated fraction

A¢ is less than zero, no transformation occurs during this increment, otherwdsg i 0, the transformation takes place.

This algorithm is analogous to the return-mapping algorithm in plasticity.

CONCLUSIONS

A model of deformation-induced martensitic transformation in TRIP steel was established in the framework of the con-
tinuous mechanics and thermodynamics at a large strain. The model provides a local kinetics description of martensite
growth and the evolution of the stress in both phases as the martensite transformation proceeds.
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