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Summary A non-equilibrium description of states of computational elements and their interaction is proposed for the numerical 
simulation of stress-induced martensitic phase transition front propagation in thermoelastic solids. This description is based on the 
generalization of the thermodynamics of discrete systems to the thermoelastic case.  A finite-volume numerical scheme is then 
constructed by means of corresponding contact quantities. Additional constitutive information is introduced by means of certain 
assumptions about the entropy production at the phase boundary. Results of numerical simulations capture experimental 
observations.  
 

BACKGROUND 
 
The propagation of phase interfaces in shape-memory alloys under applied stress is an experimentally observed 
phenomenon. At the macroscopic level of description, the diffusionless stress-induced martensitic phase-transition front 
propagation can be viewed as an example of moving discontinuities in thermoelastic solids.  From the mathematical 
point of view, such a problem is considered as a non-classical shock problem for conservation laws.   
There are two distinct approaches to the macroscopic description of the stress-induced martensitic phase-transition front 
propagation. The first one stems from Ericksen's analysis of the non-monotone behavior of stress-strain relation in an 
elastic bar.  The second one represents the generalization of the constitutive modelling of shape-memory alloys 
behavior for the dynamic case. 
Energy minimization [1] naturally leads to distinct material regions with continuous strain, that are separated from each 
other by strain discontinuity interfaces so as to avoid unstable branches.  Placing the distinct stable branches of the 
strain-stress curve into correspondence with distinct material phases provides the connection to stress-induced phase 
transformation.  Standard boundary value problems do not have a unique solution when phase boundaries are present. 
The crucial assumption in the model is the application of a kinetic law relating the front propagation speed and the 
driving force. Additionally, a nucleation criterion is also introduced. Theoretical prediction of possible forms of the 
kinetic law can be extracted from more refined theories in which the phase boundaries are regarded as transition zones 
exhibiting additional physical effects [2]. 
The problem of stress-induced phase transformation was also considered on the basis of a constitutive model of the 
shape memory effect and pseudoelasticity of polycrystalline shape-memory alloy [3].  The key feature of this approach 
is to introduce one or more internal variables describing the internal structure of the material.  Several models fitting 
into this basic framework have been proposed although sometimes employing quite different formalisms [4]. They 
involve a constitutive information prescribed via state equations and kinetic equations for the internal variables. 
Macroscopic free energy function is decomposed into elastic and inelastic parts.  The first part represents the energy 
storage in consequence of elastic deformations and temperature. The second part represents the energy storage due to 
internal stress fields (internal variables). Differences involve the choice and interpretation of the internal variables and 
the form of kinetic equations. 
The above mentioned approaches represent the best we can obtain both from the point of view of energy minimization 
(without introduction of internal variables) and from the point of view of the constitutive modelling of SMA behavior 
based on the martensitic volume fraction as an internal variable in the framework of the thermomechanics of continua.  
In spite of the differences between the above mentioned approaches, one assumption is common: both of them exploit 
the local equilibrium approximation. However, to perform simulations of practical examples we need to move to 
numerical approximation. In this case we meet with a non-equilibrium behavior of finite-size discrete elements or 
computational cells accompanied by entropy production at the moving phase boundary. The local equilibrium 
approximation is not sufficient to describe such a behavior. 
 

NON-EQUILIBRIUM DESCRIPTION AND NUMERICAL APPROXIMATION 
 
A consistent non-equilibrium description of the process means that we need to have both the non-equilibrium 
description of states of computational elements and their interactions. The best possibility is provided by the 
thermodynamics of discrete systems [5].  In this theory, in addition to usual local equilibrium quantities, so-called 
contact quantities are introduced which provide the description of interaction between the systems.  The constitutive 
modelling in some sense is in between above mentioned approaches: we suppose different free energy functions for 
austenitic and martensitic phases (like in [1]) but the free energy is decomposed into a local equilibrium and an excess 
part (like in [3]). The state equations for the contact quantities (related to the excess of free energy) are established in 



  

the same way as the state equations for the local equilibrium quantities based on the local equilibrium part of free 
energy. A finite-volume numerical scheme is then constructed by means of corresponding contact quantities.  
The next step is to establish the non-equilibrium jump conditions at the phase interface. Each model of the stress-
induced martensitic phase-transition front propagation uses its own jump relations. All of them one way or another 
differ from the classical equilibrium jump relations, which consist in the case of thermoelastic solids in the continuity of 
temperature and chemical potential and the continuity of the normal Cauchy traction at the phase boundary. We apply 
the non-equilibrium jump relations [6], which should be fulfilled for each pair of adjacent discrete elements.  Additional 
constitutive information is introduced by means of certain assumptions about the entropy production at the phase boundary. 
It is shown [7] that the final rules for the determination of the averaged quantities following from the non-equilibrium 
jump relation and kinematic condition fully coincide with those obtained from the solution of the Riemann problems at 
the interfaces between cells in the wave propagation algorithm in the absence of phase transformation. 
 

 
 

Fig.1. Stress-strain relation at the phase boundary: comparison with experimental data. 
 

NUMERICAL RESULTS 
 

To show the capability of the algorithm, we compare the results of computation for the stress-strain relation in single 
crystalline CuZnAl shape-memory alloy with the experimental data [8]. The comparison of the stress-strain relation in the 
case of the full recovering of austenite after unloading is shown in Fig. 1. Here the solid line corresponds to computations, 
and crosses denote the experimental data.  
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