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Summary A systematic methodology for the evaluation of various existing linearisation procedures sustaining mean field theories
for nonlinear composite materials is proposed and applied to the ’modified secant’ and various ’affine’ formulations. It relies on the
analysis of a composite for which an exact treatment of both the nonlinear homogenisation problem and the linear homogenisation
of the ’linear comparison material’ with identical microstructure is possible; the effects of the sole linearization method can then be
evaluated.

Introduction
The present study aims at defining a methodology and a numerical tool which could be used for a systematic evaluation
of the various existing homogenization methods for nonlinear heterogeneous materials and composites. These methods
classically rely on two separate procedures:
- first, they propose a way to approximate the actual nonlinear behavior by linear constitutive equations, through a specific
linearization procedure, so as to define a heterogeneous linear comparison material (’LCM’);
- an appropriate linear homogenization model is then chosen to predict the overall as well as the local responses of this
fictitious LCM.
A number of such nonlinear homogenization schemes have been proposed recently which deserve systematic comparisons
both at the global and the local levels in order to select the most efficient ones or to propose improved new ones. When
doing so, two main difficulties have to be overcome: first the two above-mentioned procedures (i.e., linearization and
linear homogenization) should preferably be evaluated separately in order to focus attention on the most critical step of
defining the LCM and dealing with the intra-phase heterogeneity; second, the comparison would be more conclusive if an
exact and complete (i.e. providing both global response and local fields) solution of the studied problem was available.

Proposed methodology
These statements have led to the choice of a periodic microstructure so as to make possible an exact (numerical) resolution
of the nonlinear problem and, after application of various linearization approaches, to be left with a linear homogenization
problem to be addressed with the same (periodic) microstructure, which can also be solved exactly. Thus, attention can
be focused only on the specific effects of the choice of such or such linearization procedure through the comparison of
the associated predicted overall properties and local stress and strain fields with the exact solution. Such a methodology
improves on more classical approaches, in which predictions of mean field theories for nonlinear random microstructures
are often compared to numerical simulations for periodic composites, the effects of the linearisation procedures and the
approximate treatment of the homogenisation of the LCM being then combined.
As a first step, constitutive behavior deriving from one single potential only is considered. For the sake of simplicity,
the studied material reduces to a (periodic) two-phase composite with a nonlinear matrix (constitutive relationσ = f(ε)
and aligned identical elastic spheroidal inclusions. The periodic unit cell is subjected to periodic conditions and an axial
loading. The nonlinear solution is obtained thanks to a finite element computation under code Cast3M, whereas the
linearization procedures (incremental, classical and modified secant methods, classical affine, with its full formulation
as well as several simplified formulations, are considered ) are implemented in C++ routines. The effective properties
and the local responses of the LCM are derived exactly by means of an additional FEM Cast3M computation, which is
interfaced with the C++ code.

Application
An illustrative example of preliminary results already obtained this way is described below. It is first devoted to the eval-
uation of the so-called ’modified secant formulation’ proposed by Suquet [1], in close connection with Ponte Castañeda’s
variational procedure [2], through the quantitative comparison of its global and local (not shown here) predictions with the
exact ones. According to this formulation the local behavior of the constitutive phases of the LCM is isotropic and defined
by σ(x) = Lsct(〈ε⊗ ε〉) : ε(x) with Lsct = 3kJ + 2µsct(〈ε⊗ ε〉)K, whereµsct is the secant moduli. The second-order
moment of the local strain in the matrix〈ε⊗ ε〉 can be evalutated by direct integration of the numerical solution, or by
means of a partial derivative of the overall axial response with respect to the local shear moduli. Only one axisymmetric
FEM calculation is required for the LCM even though its overall linear behavior is anisotropic. The same analysis has also
been applied to the classical ’affine’ linearisation procedure [3, 5] for which constitutive equations of the matrix in the
LCM readσ(x) = Ltgt(〈ε〉) : ε(x)+τ0(x), with use of the anisotropic tangent moduliLtgt = df

dε (〈ε〉) and the eigenstress
τ0 = f(〈ε〉) − Ltgt(〈ε〉) : 〈ε〉). In the case of uniaxial load, the local elastic behavior in the LCM exhibits transverse
isotropy :Ltgt = 3kJ + 2µsct(〈ε〉)F + 2µtgt(〈ε〉)E - notations of [4], and so does its overall linear behavior. The ’full
anisotropic implementation’ of the affine formulation requires the computation of all the components of the effective ten-
sor of moduli and that is why transverse and longitudinal shearing modes must be considered through a Fourier analysis in
addition to the axial symmetric modes (tension and compression in the transverse plane). This complex formulation can



be simplified first by considering an isotropic matrix with moduli given either asLm = 3kJ + 2µm
tgt(〈ε〉)K (simplified

affine-1), orLm = 3kmJ +2µm
iso(〈ε〉)K whereµm

iso = 4µm
sct+µm

tgt

5 (simplified affine-2), but still computing exactly
the anisotropic behavior of the LCM. An additional simplification is provided when, in addition, one assumes the overall
behavior isotropic and identifies its moduli through its response to tension (’full isotropic’ affine formulation).
All the corresponding results are shown in Figure 1.
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Figure 1. Effects of the choice of a linearization method (modified secant and various affine versions) on the tensile stress-strain curve
of a two-phase composite. Inclusion volume fraction :30%; Inclusion elastic properties :EI = 400 GPa andνI = 0.3. Power-law
matrix properties:Em = 75 GPa,νm = 0.2, n = 10, ε0 = 1% andσ0 = 300 MPa.

Conclusions
As a preliminary conclusion, one can notice that the ’full isotropic’ affine linearization treatment yields the softest global
response, and is very close to the exact nonlinear solution. This apparently good prediction of this very approximate
procedure is probably the consequence of two opposite trends: the ’classical’ formulation of the affine procedure, which
does not account for intra-phase heterogeneities in the definition of the LCM, is known to yield somewhat too hard
predictions and this is compensated by the recourse to a very soft simplification of the tensor of tangent moduli (µm

tgt <<
µm

sct). The deeper analysis of this comparison, in particular in terms of local strain and stress fields, but also local
density of potential energy, is under progress and should provide more insight. The evaluation of the recently proposed
’second-order’ linearization procedure [4], closely related to the affine one [5], but taking into account to some extent the
intra-phase heterogeneity, is also planed and might lead to other conclusions regarding the pertinence of the recourse to
a simplified isotropic tensor of tangent moduli. More generally, it is expected to propose from such comparisons some
optimized linearization treatment, with respect to some criteria, still to be defined. In the long term, the application of
such a methodology to two-potential behavior might also be investigated.
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