OVERALL PROPERTIES OF PERIODIC BIOCOMPOSITES
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Summary Electroelastic properties of two-phase circular cylindrical fibre-reinforced biocomposites are calculated for
square and hexagonal periodical arrays using the asymptotic homogenization method. The materials of the composite
belong to the hexagonal system, classes 622 and 6. Easy to compute closed-form formulae are obtained. Numerical
results are shown for several biomaterials, e.g., collagen and collagen-hydroxyapatite composite and others.

INTRODUCTION

Composites, whether natural or man-made, span a wide variety of geometries (particulates, fibers, laminates,
etc.). Composition is guided, and even tailored, by the application at hand. In medical applications the
constituents must fulfill a number of prerequisites to be of any use [1]. At present there are a number of
biomaterials, as they are called, under study for, say, bone regeneration, implants, replacement scaffolds, etc.
[2]. Electroelastic properties of two of them, collagen and collagen-hydroxyapatite, have been measured lately
[3]. Their anisotropy belongs to the hexagonal system, class 622. Other related biomaterials (bone, tendon, etc.)
have the symmetry 6. It is of interest to find the effective properties of composites with these elements. Recently,
the overall properties of two-phase fiber-reinforced periodic composites, i.e., long parallel circular cylindrical
fibers of one material embedded into another one, have been found in closed-form for square [4] and hexagonal
[5] arrays and materials with the 6mm symmetry. These were found using the asymptotic homogenization
method. Here it is proposed to use that method as to include the classes 622 and 6. For the purpose of brevity,
only one such problem (hexagonal array and 622 symmetry) is explicitly addressed here.

STATEMENT OF THE PROBLEM

Figure 1 shows the unit cell. As a consequence of the geometrical axial symmetry, the initial set of equations
uncouple into two independent systems. For brevity, the simpler
problem is described here, since it typifies the method and some of

Y2 the results. This corresponds to the case of out-of-plane mechanical
displacement/in-plane electric field. The governing equations are

div (019, 08) = 0= div (D\?,D{V)in R2, (1)

where a%),ag? are the stress components; Dgf),Dge) those of the
electric displacement and € < 1. The constitutive relations for the

1 class 622 are

023 = 2pesz — $'Eq, 013 = 2pers + §'Eo, (2)

D1 = 281623 + tEl, D2 = —281613 + tE2, (3)
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3 where p, s’ and t are the composite’s axial shear modulus, stress
piezoelectric constant and axial permittivity, respectively. The same
Figure 1: Hexagonal Unit Cell notation is used for the properties of the phases except that an index
1 (2) is used for the matrix (fiber). The components of the strain
are €13, €o3 and those of the electric field Eq, Es.

Asymptotic homogenization method
The method proceeds as usual [6]. The focus here is on the effective properties p, s’ and t. They are given by

p=py+ (PM1 —s'Ny), s' = s, +(s'M 1 +tN>), (4)



where the comma notation denotes differentiation with respect to y; or y2, the index v indicates the Voigt
(arithmetic) mean, e.g., p, = (1 — Va)p1 + Vapo, where V5 is the area fraction occupied by the fiber and
|H|(F(y)) = [ F(y)da, H = H;UH, is the unit cell (Fig. 1). As for t, it is obtained from the universal relation
derived using the Milgrom-Shtrikman compatibility equation, since it connects p, s’ and ¢. The functions M (")
and N v = 1,2, are the solution of the following unit cell problem, the so-called local problem:

AM® = AN =0in H = Hy UHs, | MO ||=]| N® ||=0onT, (5)
I (MG = t, NOYna + (0, MG + 5L, NOYns [|= = || py || m1, on T, (6)
(st M5 = £, NYny = (s, M + £, NS )ns [|=]] s, || ma, on T, (7)
(M) = (N) =0, (8)

where the contrast to p across I is || py ||= p1 — pe, etc., (n1,n2) is the unit normal to I'. Potential methods are
used to find M (") and N using doubly periodic harmonic functions of periods 1, exp(im/3) (the quasi-periodic
Weierstrass zeta function and its derivatives of order k). The application of Green’s theorem to (4), yields

p=pi(1—2ma1),s" = s] + 2t by, 9)

where a1, by, are the residues at the origin of the functions M) and N, respectively. They can be found
after solving an infinite system of algebraic equations that converge very quickly. Its truncation to a sequence
of finite systems leads to the sought coefficients a1,b; and the overall properties (4). The numerical scheme
ends when enough accuracy is achieved.

NUMERICAL EXAMPLES

The material properties for the calculations that follow were taken from [3]. After some minor calculations, the
data used is: for collagen, taken as the matrix medium p; =
1.4 GPa,ti/eo = 2.825(s9 = 8.854 x 107'2C2%/Nm?, permittiv-
Collagen-HA in Collagen ity of free space), di = 6.2.107'*C/N; the fiber material is a
collagen-hydroxyapatite (HA) composite, whose properties are ps =
2.697 GPa,ty/eo = 2.509,d> = 4.1. x 10~'*C/N. The results are shown
in Fig. 2, which displays a plot of the overall properties p, t/€y and d as a
function of the fiber volume fraction V5, up to the percolation limit (i.e.,
when the fibers get in contact). The three properties show a monotonic
behaviour as a function of the fiber volume fraction. Note that d = s'/p
t /g, (nounits) is the strain piezoelectric coefficient.
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Fiber Volume Fracion Closed-form formulae for the overall properties of fiber-reinforced com-
posites, whose electroelastic characteristics belong to the hexagonal sys-
Figure 2: Overall Properties tem, classes 622 and 6, are obtained for square and hexagonal arrays.
An example using newly measured properties of collagen and a collagen-
hydroxyapatite composite is shown here. Other examples will be shown.

References

[1] Thompson I., Hench L.L.: Medical Applications of Composites. In: Kelly A., Zweben C., eds., Compre-
hensive Composite Materials. Elsevier, Amsterdam 2000.

[2] Hollister S.A., Chu T.G., Halloran J.W., Feinbert A.E.: Design and Manufacture of Bone Replacement
Scaffolds, In: Cowin S.C., ed., Bone Mechanics Handbook, 2nd ed., Chapter 36, 14 pp; CRC Press, Boca
Raton 2001.

[3] Silva C.C., Thomazini D., Pinheiro A.G., Aranha N., Figueir6 S.D., Gdes J.C., Sombra A.S.B.: Collagen-
Hydroxyapatite Films: Piezoelectric Properties. Mat Sci Engng B86:210-218 2001.

[4] Bravo-Castillero J., Guinovart-Diaz R., Sabina F.J., Rodriguez-Ramos R.: Closed-Form Expressions for the
Effective Coefficients of Fibre-Reinforced Composite with Transversely Isotropic Constituents. II: Piezoelec-
tric and Square Symmetry. Mech Mat 33:237-248 2001.

[5] Sabina F.J., Rodriguez-Ramos R., Bravo-Castillero J., Guinovart-Diaz R.: Closed-Form Expressions for the
Effective Coefficients of Fibre-Reinforced Composite with Transversely Isotropic Constituents. II: Piezoelec-
tric and Hexagonal Symmetry. J Mech Phys Solids 49:1463-1479 2001.

[6] Bensoussan A., Lions J.L., Papanicolau G: Asymptotic Analysis for Periodic Composites. North-Holland,
Amsterdam 1978.



