PLANE HARMONIC WAVES IN A MICROPERIODIC LAYERED THERMOELASTIC SOLID REVISITED

Józef Ignaczak

Polish Academy of Sciences IPPT PAN, Swietokrzyska 21, PL 00-049 Warszawa, Poland

<u>Summary</u> A one-dimensional dynamic coupled thermoelastic refined averaged theory for a microperiodic composite is used to study plane harmonic waves in a layered infinite solid. In such a theory an eight-order in time partial differential equation involving a high intrinsic mechanical frequency Ω_M and a high intrinsic thermal frequency Ω_T is a central one. It is shown that if Ω_M and Ω_T are finite, there are two harmonic thermoelastic waves of a given frequency ω that propagate in a positive direction normal to the layering. Numerical results illustrating propagation of the two waves in a nanoperiod composite are included.

INTRODUCTION

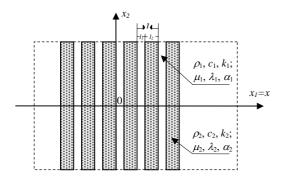


Fig. 1 A microperiodic layered infinite thermoelastic solid

Consider a layered infinite thermoelastic solid which is composed of an infinite number of identical thin subunits that form a spatially periodic pattern with a period l as shown in Fig. 1. Each subunit consists of two layers that, in general, have different dimensions and are made of different homogeneous isotropic thermoelastic materials. Let l_i , ρ_i , c_i , k_i , μ_i , λ_i , and α_i (i=1,2), respectively, denote the thickness, density, specific heat, thermal conductivity, shear modulus, Lame modulus, and thermal expansion of the ith layer in a subunit. Also, assume that an external thermomechanical load is uniformly distributed over a plane parallel to the layering for every time t > 0. Then a thermoelastic process corresponding to the load is one-dimensional, and can be described by the dimensionless partial differential equations (see [1]-[2])

$$\begin{cases}
\left(\frac{\partial^{2}}{\partial \tau^{2}} + \kappa_{1}^{2}\right) \left[\left(\frac{\partial^{2}}{\partial \xi^{2}} - \frac{\partial}{\partial \tau}\right) \left(\frac{\partial}{\partial \tau} + \alpha\right) - (\alpha - \beta) \frac{\partial^{2}}{\partial \xi^{2}}\right] + \varepsilon_{1} \left(\frac{\partial}{\partial \tau} + \alpha\right) \frac{\partial^{3}}{\partial \tau^{3}} \right] \\
\times \left[\left(\frac{\partial^{2}}{\partial \tau^{2}} + \kappa_{1}^{2}\right) \left(\frac{\partial^{2}}{\partial \xi^{2}} - \frac{\partial^{2}}{\partial \tau^{2}}\right) - \kappa_{2}^{2} \frac{\partial^{2}}{\partial \tau^{2}}\right] S - \varepsilon_{2} \left(\frac{\partial^{2}}{\partial \tau^{2}} + \kappa_{3}^{2}\right)^{2} \left(\frac{\partial}{\partial \tau} + \alpha\right) \frac{\partial^{3}}{\partial \tau^{3}} S = 0
\end{cases}$$

$$\left(\frac{\partial^{2}}{\partial \tau^{2}} + \kappa_{3}^{2}\right) \frac{\partial^{2}}{\partial \tau^{2}} \theta - \left[\left(\frac{\partial^{2}}{\partial \tau^{2}} + \kappa_{1}^{2}\right) \left(\frac{\partial^{2}}{\partial \xi^{2}} - \frac{\partial^{2}}{\partial \tau^{2}}\right) - \kappa_{2}^{2} \frac{\partial^{2}}{\partial \tau^{2}}\right] S = 0$$
(1b)

where $S=S(\xi,\tau)$ and $\theta=\theta(\xi,\tau)$ denote the stress and temperature fields, respectively; the parameters κ_1,κ_2 , and κ_3 represent the frequencies proportional to an intrinsic mechanical frequency $\Omega_{\scriptscriptstyle M}$ while ε_1 and ε_2 stand for the thermoelastic coupling parameters; and α and β represent the frequencies proportional to an intrinsic thermal frequency $\Omega_{\scriptscriptstyle T}$.

Equation (1a) is an eight-order in time partial differential equation that plays a central role in the theory. Once a solution $S = S(\xi, \tau)$ to Eq. (1a) is found, the temperature $\theta = \theta(\xi, \tau)$ is obtained by integrating Eq. (1b) with respect to time.

The existence of two time-periodic solutions (S,θ) to Eqs. (1) that represent waves propagating in a positive direction normal to the layering was established in [1]-[2] when $\Omega_{\scriptscriptstyle M}\to\infty$ and $\Omega_{\scriptscriptstyle T}<\infty$ or $\Omega_{\scriptscriptstyle M}<\infty$ and $\Omega_{\scriptscriptstyle T}\to\infty$. In the present paper the existence of two harmonic thermoelastic waves is proved when $\Omega_{\scriptscriptstyle M}<\infty$ and $\Omega_{\scriptscriptstyle T}<\infty$. In the next section an existence theorem on two harmonic thermoelastic waves is formulated, and a numerical analysis of the two waves for a particular composite is presented. Finally, results and conclusions are summarized.

PLANE HARMONIC WAVES IN A MICROPERIODIC LAYERED THERMOELASTIC SOLID WHEN $\ \Omega_{\scriptscriptstyle M} < \infty \$ AND $\ \Omega_{\scriptscriptstyle T} < \infty$

We look for a solution to Eq. (1a) in the form

$$S(\xi,\tau) = \hat{S}\exp[i(\omega \tau - \eta \xi)], \quad i^2 = -1, \quad |\xi| < \infty, \quad 0 \le \tau < \infty$$
 (2)

where \hat{S} is a constant, ω is an assigned frequency ($\omega > 0$) and η is the wave number to be selected from the condition that $S = S(\xi, \tau)$ be a nontrivial solution to Eq. (1a). A function S given by Eq. (2) represents a plane harmonic stress wave propagating in the ξ -direction with a velocity c and with an attenuation q if

$$\eta = \omega / c - i q, \quad c > 0, \quad q > 0 \tag{3}$$

Substituting $S = S(\xi, \tau)$ from Eq. (2) into Eq. (1a) a fourth-degree algebraic equation for η is obtained. A root analysis of this equation leads to the Theorem: If $0 < \omega < \kappa_3(l) < \kappa_1(l)$ and $0 < \varepsilon_2 < 0.5$ then there are two wave numbers of the form

$$\eta_k = \omega / c_k - i \, q_k, \quad c_k > 0, \quad q_k > 0, \quad (k = 1, 2)$$
 (4)

The associated thermoelastic waves are then represented by the formulas

$$S_{\nu}(\xi,\tau) = \operatorname{Re}\left\{\hat{S}_{\nu} \exp[i(\omega \tau - \eta_{\nu} \xi)]\right\} \tag{5}$$

$$\theta_{k}(\xi,\tau) = \text{Re}\left\{\hat{S}_{k}\omega^{-2}(\kappa_{3}^{2} - \omega^{2})^{-1}[(\eta_{k}^{2} - \omega^{2})(\kappa_{1}^{2} - \omega^{2}) - \kappa_{2}^{2}\omega^{2}]\exp[i(\omega \tau - \eta_{k}\xi)]\right\}$$
(6)

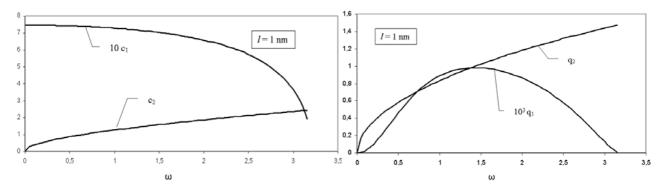


Fig. 2 The velocities $c_1 \& c_2$ treated as functions of ω for a nanocomposite.

Fig. 3 The attenuation coefficients $q_1 \& q_2$ treated as functions of ω for a nanocomposite

where \hat{S}_k stands for a constant and Re $\{\cdot\}$ denotes the real part of $\{\cdot\}$. To illustrate numerically the solution (4)-(6) we assume that each subunit is made of a zirconium oxide and a titanium alloy layers (see [3]). Figures 2 and 3, respectively, show the pairs (c_1, c_2) and (q_1, q_2) treated as functions of ω for l = 1nm. It follows from Figures 2 and 3 that a thermoelastic wave propagating with the smaller velocity is almost dispersionless and of a small damping, while that of the greater velocity reveals a high dispersion and a large damping. An analysis of the wave profiles S_1, θ_1, S_2 and θ_2 propagating along the positive ξ -axis indicates that the pair (S_1, θ_1) is represented by an isothermal elastic wave with a small damping $(\theta_1 \approx 0)$ while (S_2, θ_2) is represented by a thermoelastic wave with a fast decay on the ξ -axis.

CONCLUSIONS

- A one-dimensional averaged theory of thermoelastic waves in a microperiodic layered infinite solid is revisited in which an eight-order in time PDE involving a high intrinsic mechanical frequency $\Omega_{\scriptscriptstyle M}$ and a high intrinsic thermal frequency $\Omega_{\scriptscriptstyle T}$ is a central one. It is shown that if $\Omega_{\scriptscriptstyle M}$ and $\Omega_{\scriptscriptstyle T}$ are finite, there are two harmonic thermoelastic waves of a given frequency ω that propagate in a positive direction normal to the layering.
- \Box The numerical analysis of the two waves for a zirconium oxide-titanium alloy composite with a period l=1nm indicates that a wave propagating with the smaller velocity is almost dispersionless and isothermal in nature while that of the greater velocity reveals a high dispersion and a large damping.
- The two harmonic thermoelastic waves may be useful in a study of harmonic waves in a microperiodic layered semi-infinite thermoelastic body.

References

- [1] J. Ignaczak, Plane harmonic waves in a microperiodic layered infinite thermoelastic solid, *Proceedings of The Fifth Int. Congress on Thermal Stresses;TS2003*, June 8-11, 2003, Blacksburg, VA, USA, pp. TM-1-1-1 to TM-1-1-4.
- [2] J. Ignaczak, Plane harmonic waves in a microperiodic layered infinite thermoelastic solid, *J. Thermal Stresses*, vol. 26, pp.1033-1054, November-December 2003.
- [3] Y. Ootao, R. Kawamura, Y. Tanigawa, and R. Imamura, Optimization of material composition of nonhomogeneous hollow circular cylinder for thermal stress relaxation making use of neural network, *J. Thermal Stresses*, vol. 22, pp. 1-22, 1999.