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Summary In the present paper a Korteweg–de Vries (KdV) type evolution equation, including the third- and fifth order dispersion

and the fourth order nonlinearity is used for modelling the wave propagation in microstructured solids. The model equation is solved

numerically under localised initial conditions. Possible solution types are introduced and discussed.

INTRODUCTION

Wave propagation in microstructured media is essentially influenced by nonlinear and dispersive effects. The simplest

model governing these two effects results in the celebrated KdV equation ut + uux + du3x = 0. However, studies of

microstructured materials have shown that higher-order dispersive effects together with higher-order nonlinear effects can

give rise to dramatic changes in the behaviour of emerging waves. In the present paper a KdV type evolution equation,

including the third- and the fifth order dispersive and the fourth order nonlinear terms,ut + [P (u)℄x + du3x + bu5x = 0; P (u) = �0:5u2 + u4; (1)

is used for modelling the 1D longitudinal wave propagation in microstructured solids. Here u is the excitation, t the time

coordinate, x the space coordinate, d and b the third- and the fifth-order dispersion parameters, respectively and elastic

potential P (u) introduces the quartic nonlinearity. Logarithmic dispersion parameters dl = log d and bl = log jbj are used

instead of d and b for analysis herein after. The sources of higher order effects can be dislocations in the crystal structure

of martensitic-austenitic shape-memory alloys [1, 2].

The character of dispersion depends on the signs of parameters d and b: for db < 0 one has normal dispersion, however

for db > 0 the dispersion is normal for some wavenumbers and anomalous for others [3]. In the present paper the cased > 0 and b < 0 is considered.

THE PROBLEM AND GOALS.

In [3, 4] we have shown that in the case of harmonic initial conditions the equation (1) admits soliton type solutions

without reference to the character of dispersion (normal or anomalous). In the present paper the model equation (1) is

solved numerically under localised initial conditionsu(x; 0) = A se
h2 x� ; � =p12d=A: (2)

The initial solitary wave (2) corresponds to the analytical solution of the KdV equation. Therefore in systems governed

by the KdV equation such solitary waves are called solitons , i.e., they propagate with constant speed and amplitude and

interact elastically (they restore their amplitude and speed after the interaction).

Our main goal here is to answer the following questions: (i) whether or not solitary waves (2) can propagate in media

described by the equation (1) with constant speed and amplitude and (ii) how do such solitary waves interact in such a

media. In the other words, do the solitary waves (2) behave like solitons in media where the higher order effects, governed

by the equation (1), are of importance.

RESULTS AND DISCUSSION

Numerical solutions are found in the domain of logarithmic dispersion parameters 0:8 � dl � 2:4 and 1:2 � bl � 4:8. For

numerical integration the discrete Fourier transform (DFT) based pseudospectral method [5] and periodic initial conditionsu(x; t) = u(x+ 4n�); n = �1;�2; : : : (3)

are used. The length of the space period is chosen 4� in order to separate the initial localised waves.

Solution types

Making use of the numerical results three solution types can be detected. The type of solution depends essentially on the

value of the amplitude A of the initial localised wave (2).

First type. Small amplitude initial localised waves decay to a chaotic wave-train (Fig. 1).

Second type. If the amplitude A exceeds a certain value A1(dl; bl) then a wave-train, having regular behaviour in time,

forms (Fig. 2). In this case one can discuss about the solitonic character of the solution, recurrence and superrecurrence

phenomena.



Third type. If the amplitude has values over a certain critical value A�(dl; bl) then the initial excitation propagates with

minimal disturbances, i.e., its speed and amplitude changes by a small extent only during the propagation. The higher the

amplitude A, the faster the solitary wave propagating to the right (Figs. 3 and 4). Unfortunately there does not exist such

a direct relation between the amplitude and speed like in the KdV case. From the other hand, the higher the amplitude,

the more distinctive the left-going small amplitude radiation (Fig. 4).

Figure 1. First solution type: time slice plot over two space

periods (dl = 0:8, bl = 2:0, A = 1:5, 0 � t � 300)

Figure 2. Second solution type: time slice plot over two space

periods (dl = 0:8, bl = 2:0, A = 1:75, 0 � t � 300)

Figure 3. Third solution type: time slice plot over two space

periods (dl = 2:0, bl = 4:0, A = 2:1, 0 � t � 100)

Figure 4. Third solution type: time slice plot over two space

periods (dl = 2:0, bl = 4:0, A = 2:3, 0 � t � 100)

In the subdomain �0:8 < bl � 2dl < 1:6 one can say that neither the third- nor the fifth order dispersive effects are

dominating. In the other words, in this subdomain both dispersive terms (du3x and bu5x) play essential role. In this

subdomain the critical amplitude 1:7 � A� � 3:41. Furthermore, the second solution type was detected only in this

subdomain for dl � 1:2. For bl < 2dl � 0:8 the fifth order dispersive effects dominate over that of the third order and the

value of A� increases rapidly. For bl > 2dl1:6, vice versa, the third order dispersive effects are dominating and the value

of the critical amplitude decreases slowly having the limit value 1:67 < A� < 1:68.

CONCLUSIONS

In the present paper it is shown that if the amplitude A > A� then the solitary wave (2) can travel with a constant speed

and without significant changes in its amplitude. However, numerical experiments with solitary waves having different

amplitudes (and therefore different speeds) demonstrate that they do not interact like solitons — there exist a certain

transformation of energy and/or mass between interacting solitons. This phenomenon causes the slower solitary wave

move more slowly and the faster one even faster. The results are important for the nondestructive evaluation of material

properties of microstructured solids.
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