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Summary The dispersive behaviour and stability issues of time-harmonic waves propagating in an imperfectly bonded pre-stressed 
symmetric layered composite, which consists of incompressible isotropic elastic materials is considered. The shear spring type resistance 
model is employed to simulate the imperfect interface. Dispersion relations for both flexural and extensional waves are obtained. The 
stability criteria are discussed and the neutral curves are plotted.   

 
BACKGROUND AND FORMULATION OF THE PROBLEM 

 

Wave propagation in pre-stressed layered composites has been studied in [1, 2] for the perfectly bonded case.  In the 
present paper, recent work done by the authors on the more general case of imperfectly bonded composite [3, 4] is 
discussed. 
 

The bimaterial pre-stressed symmetric layered composite consists of an inner layer (thickness 2d) and two identical 
outer layers (thickness h) of isotropic incompressible elastic materials, where the principle axes of strain in each layer 
are coincident.  The Cartesian coordinate system is chosen such that the origin O is at the mid-plane of the composite, 

1x  and 2x -axes are also coincident with the principal axes, the 2x -direction is normal to the free surface of the layered 
composite and time harmonic wave propagation is in 1x -direction.  The outer layers and inner layer are homogeneous 
with material parameters and mass density ,α  ,β  ,γ  ρ  and *,α  * ,β  * ,γ  * ,ρ  respectively.  In the remainder of this 
paper, all quantities with an asterisk refer to variables and parameters of the inner layer. 
 
Harmonic wave propagating in the outer layer are expressed as 1 2( , , )u u p = 2 1( )

1 2( , , ) ,q k x ik x vtA A kP e e −  where iu  is the 
displacement increment in ix -direction, p  is pressure increment, k  is wavenumber, v  is phase speed, t  is time, ,iA P  
are arbitrary constants and q  is calculated from 4q + 2( 2 )qξ β− + ( )α ξ− 0,=  where / ,β β γ=  /α α γ=  and 2 /vξ ρ γ=  
[3].  The corresponding solution for the inner layer will yield *4q + * * *2( 2 )qξ β− + * *( )α ξ− 0,=  where * aξ ξ=  and 

* / ,a rρ ρ=  */ .r γ γ=  
 
Due to the symmetric geometry of the composite, only the upper half of the composite needs to be considered.  The 
incremental traction free surface conditions are 021 1 022 1( , , ) ( , , ) 0s x d h t s x d h t+ = + =  where 02is  are the nominal stress 
increment components.  The mid-plane conditions for flexural waves are * *

1 1 022 1( ,0, ) ( ,0, ) 0,u x t s x t= =  and for extensional 
waves are *

2 1( ,0, )u x t = *
021 1( ,0, )s x t 0.=   At the interface, the continuity conditions are *

021 1 021 1( , , ) ( , , ),s x d t s x d t=  
*
022 1( , , )s x d t = 022 1( , , ),s x d t  *

2 1( , , )u x d t = 2 1( , , )u x d t  and the incremental nominal shear stress is *
021 1( , , ) ( / )xs x d t k hγ=  

*
1 1 1 1[ ( , , ) ( , , )],u x d t u x d t−  where xk  is the non-dimensional shear spring parameter. 

 
DISPERSION RELATIONS AND STABILITY CONSIDERATIONS 

 
For flexural waves the dispersion relation is obtained as 
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Equation (1) reduces to the dispersion relation of the perfectly bonded case [1] when ,xk →∞  while it reduces to the 
fully slipping interface case when 0xk = .  The dispersion relation for extensional waves is obtained from Eq. (1) by 
replacing *

mC  by *
mS  and *

mS  by *
mC  ( 1,2m = ).   
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For a particular mode when 0,ξ <  the phase speed v  is pure imaginary and instead of harmonic wave propagation in 
1x -direction, standing waves with amplitudes that grow exponentially with time are produced i.e., an unstable state.  

On the other hand, harmonic waves travelling in 1x -direction will be stable for a particular mode when 0ξ >  while 
0ξ =  corresponds to the neutral state.  By setting 0,ξ =  Eq. (1) yields the bifurcation equation, which is a quartic 

equation of σ  i.e., 
 

(F) 4 (F) 3 (F) 2 (F) (F)
4 3 2 1 0 0,σ σ σ σΦ +Φ +Φ +Φ +Φ =   (2) 

  

where the coefficients (F)
iΦ  ( 1,...,4)i =  are functions of ,kh  ,xk  ,α  ,β  * ,α  * ,β  ,r  a  and .D   The neutral curves, used 

to separate the stable and unstable region can be obtained from Eq. (2).  This equation will reduce to a quadratic 
equation of σ  when ,xk →∞  while it remains as a quartic equation when 0.xk =  Hence, in general four branches of 
neutral curves are expected for an imperfect interface and fully slipping cases while a maximum of only two branches 
could occur for perfectly bonded case.  Similar equations for extensional waves are discussed in [4]. 
 

NUMERICAL RESULTS 
 
 

 

One of the Examples considered in [3, 4] will be briefly discussed here.  The outer and inner layers are Mooney-Rivlin 
and Varga materials and the primary deformation of both layers are plane strain with principle stretches 1

1 2 1.25λ λ−= =  
and * * 1

1 2 2.25λ λ −= =  in which yields 2.441,α =  1.721,β =  * 25.629,α =  and * 5.063.β =   The other prescribed parameters 
are 2.5,r =  20,a =  0σ =  and 1D = .  The dispersion curves and neutral curves are shown in Figs. 2 and 3 where the 
limiting values as 0kh →  and kh →∞  are given in [4].   

 

Fig. 2.  Non-dimensional squared phase speed ξ ; solid lines - flexural waves and dashed lines - extensional waves. 
 

 
 

Fig. 3. Neutral curves for flexural waves; shaded area is the region (I) where all modes are stable, region (II) is where the 
fundamental mode is unstable and region (III) is where the fundamental and the next lowest modes are unstable. 

 

CONCLUSIONS 
 

The dispersive behaviour, for flexural and extensional waves are similar at low and high wavenumber limits.  For each 
type of wave at low wavenumber limit, for 0xk >  only one finite limiting squared phase speed (F) ( E)

0 0(  or )ξ ξ exists while 
for 0xk =  two finite limiting squared phase speeds (F) (F) (E) (E)

01 02 01 02( ,  or , )ξ ξ ξ ξ  are found.  At high wavenumber limit, both 
flexural and extensional waves tend to the same limits, which may be squared phase speeds of surface waves ( ),Rξ  
interfacial waves IS IP(  or ),ξ ξ  and limiting phase speed of the composite CL( ).ξ   The same stable ranges of σ  are found 
for perfectly bonded and imperfect interface cases at the low wave number limit, while at the high wavenumber limit 
the stable range is the same for imperfect interface and fully slipping interface cases. 
 

References 
 

[1] Rogerson G. A., Sandiford K. J.: Flexural waves in incompressible pre-stressed elastic composites, Q. J. Mech. Appl. Math. 50:597-
624, 1997. 

[2] Rogerson G. A, Sandiford K. J.: The effect of finite primary deformations on harmonic waves in layered elastic media, Int. J. 
Solids Struct. 37: 2059-2087, 2000. 

[3] Leungvichcharoen S., Wijeyewickrema A. C.: Dispersion effects of extensional waves in pre-stressed imperfectly bonded 
incompressible elastic layered composites. Wave Motion 38:311-325, 2003. 

[4] Leungvichcharoen S., Wijeyewickrema A. C., Yamamoto T.: Flexural waves in pre-stressed imperfectly bonded incompressible 
elastic layered composites. Int. J. Solids Struct. (under review). 


