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Summary A mathematical model of an isotropic viscously elastic porous medium is studied in this paper. Cavities are 
spherical and are quasi-equally spaced in the medium. Distance between cavities is a lot larger than the average radius 
of cavities and in turn is a lot smaller than the length of the wave that propagates in the medium. Dependencies of 
velocity and damping of the wave on the parameters of porosity of the material have been established and the analysis 
carried out. The phenomenon of non-linear stationary wave of deformation propagation has been studied for the 
material also and the dependencies of it’s parameters on porosity have been established. 
 

PRELIMINARY ASSUMPTIONS 
 
A mathematical model of dynamics of porous medium has been proposed in [1]. The following assumptions were 
made. Studied medium is firm isotropic and viscously elastic; pores are spherical and equally spaced. Propagating wave 
has finite amplitude, which means that geometrical, physical and porous nonlinearities are taken into account. Distance 
between cavities L  is a lot larger than radius of a cavity 0R  )( 0RL >>  and in turn is a lot smaller than the length of a 
wave Λ  )( Λ<<L , so there can be no interaction between the cavities. We consider, that the propagating wave is 
quasi-longitudinal, so we can state that pressure on a cavity is caused by longitudinal stress 
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∂+= . In this expression NVz = , where N  is a number of cavities in the volume, V  is a 

volume of a cavity, besides that VVV ′+= 0 , where 0V  is a starting volume of a cavity, V ′  is a volume of a cavity 

indignant by a wave, λ  and µ  are Lame coefficients, considering λµ < . Pressure in cavities is neglected. 
 

DISPERSIVE PROPERTIES 
 
Longitudinal wave propagation in porous medium lengthways the 3x  axis can be described using the following 

combined nonlinear equations (since one-dimensional problem is studied in this paper, the 3x  coordinate can be 

denoted by x , and longitudinal constituent of the displacement vector 3u  is denoted by u ): 
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The first equation describes propagation of a plane longitudinal wave in medium with pores taking into account that 
each pore volume is changing. The second one describes oscillatory process of cavity volume changing caused by the 
material deformation. 
In these equations 0ρ  is a starting density of the material, 

2
00

2
0 /4 Rρµω =  is a square of resonant frequency of 

cavity volume oscillations and ( ) 0
2 /2 ρµλ +=lc  is a 

square of longitudinal velocity. The following are some 
additional notations: 
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)26234( CBAP ++++= λµ , where P  is a coefficient, 

caused by geometrical and physical nonlinearities, CBA ,,  
are Landau constants of third order.  
 From these joint equations (1) it can be seen, that 
the consequences of the existence of cavities are the 
dispersion of a wave (frequency-dependent wave 
propagation velocity) and an additional nonlinear effect (so-
called cavitary nonlinearity). These factors manifest in 
different regimes.  

Fig. 1. Phase velocity dependence on porosity 
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Expressions for phase velocity and coefficient of damping 
for the propagating wave were obtained and are given 
graphically on figures 1 and 2 respectively. 
During the analysis we came to the conclusion, that taking 
both viscosity of the material and dissipation of the wave 
due to porosity into account causes an additional dispersive 
component to appear. Also analysis was carried out 
separately for the case of viscosity present with no 
dissipation from the cavities and vice versa to compare 
their contributions. 
 

SOLITON OF DEFORMATION 
 
From (1) it follows that the propagating wave, in terms of 
this model, is influenced by both dispersion and 
nonlinearity. Non-linearity causes generation of additional 
harmonics to which the energy is being swapped, which 
mainly causes drops in the profile of the wave, while 
dispersion causes smoothing of the drops because of the 
difference in wave velocities. The combined effect of these 
two factors can be a reason for forming nonlinear 
stationary waves. These are the waves that propagate with constant velocity without changing its form. 
We seek for a solution of (1) in the form of 
stationary wave of deformation 

( ) UVtxW =−=ξ , propagation of which is 
described by the following equation 
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, where V  is the velocity 

of the stationary wave and ξ  is a new coordinate. 
Physically realizable are only the cases when the 
wave form does not have any constant constituent. 
In this particular case it is possible only if wave 
velocity changes in the ranges 
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, which is that  

0,0 >< ba . Expressions for amplitude of the 
soliton and width of the soliton were obtained and 
analyzed. Figures 3 and 4 respectively represent 
amplitude and width dependence on the porosity. 
 
CONCLUSIONS 
 
Dependencies of velocity of the wave on the 
parameters of porosity of viscously elastic material 
have been established and the analysis carried out. 
The phenomenon of non-linear stationary wave of 
deformation propagation has been studied for the 
material also and the dependencies of basic 
parameters of the soliton on porosity have been 
established. 
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      Fig. 2. Coefficient of damping dependence on porosity 

           Fig. 3. Soliton amplitude dependence on porosity 

Fig. 4. Soliton width dependence on porosity 


