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INHOMOGENEOUS CIRCULARLY POLARIZED WAVES IN ORTHORHOMBIC CRYSTALS

Philippe Boulanger∗, Michael Hayes∗∗
∗Université Libre de Bruxelles, Dpt. de Mathématique, Campus Plaine CP218/1, 1050 Bruxelles, Belgium

∗∗University College Dublin, Department of Mechanical Engineering, Belfield, Dublin 4, Ireland

Summary For elastic homogeneous plane waves in crystals, Fedorov § Fedorov introduced a decomposition of the acoustical tensor,
valid for all orthorhombic, tetragonal, hexagonal and cubic crystals. Here, in considering the propagation of inhomogeneous waves
in orthorhombic crystals, we generalize the Fedorov § Fedorov concept of “pseudo-transverse” and “pseudo-longitudinal” waves to
elliptically polarized inhomogeneous waves, and determine the corresponding possibilities for circularly polarized waves.

BASIC EQUATIONS

Within the context of linearized elasticity theory, the equations of motion governing the displacement ui of an anisotropic
elastic body of material density ρ are

dijkl∂
2uk/∂xj∂xl = ρ∂2ui/∂t2, (1)

where dijkl are the elastic stiffnesses, assumed constant, with the symmetries dijkl = djikl = dijlk = dklij . For or-
thorhombic crystals, using Voigt’s notation, the only non-zero elastic stiffnesses are d11, d22, d33, d44, d55, d66, d12, d13, d23.
The propagation of time-harmonic inhomogeneous plane waves with complex slowness S = NC and complex amplitude
A is governed by the propagation condition

Q(C)A = wA , Qik(C) = dijklCjCl , with w = ρN−2. (2)

The tensor Q(C) is called the “complex acoustical tensor”. For each chosen bivector C, the eigenvalue problem (2)1 for
w and A has to be solved. This procedure is called the “directional-ellipse method”, or “DE-method”[4].

FEDOROV § FEDOROV DECOMPOSITION

For crystals of orthorhombic, tetragonal, hexagonal or cubic symmetry, Fedorov & Fedorov[1] introduced a decomposition
of the acoustical tensor. Generalizing this decomposition to the case of inhomogeneous waves, the complex acoustical
tensor Q(C) may be written as

Q = D + N ⊗ N , (3)

where D is a complex diagonal tensor and N a bivector, given by

D = diag[D1, D2 , D3] , N = (β1C1, β2C2, β3C3) . (4)

For orthorhombic crystals, we have
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With the Fedorov & Fedorov decomposition (3), the secular equation, det{Q(C) − w1} = 0, reads

(w − D1)(w − D2)(w − D3) − N2
1 (w − D2)(w − D3) − N2

2 (w − D3)(w − D1) − N2
3 (w − D1)(w − D2) = 0. (7)

In considering the decomposition (3) of the acoustical tensor for homogeneous waves, Fedorov & Fedorov[1] introduced
“pseudo-longitudinal” and “pseudo-transverse” waves. “Pseudo-longitudinal” waves are those waves whose amplitude A
is along N, whilst “pseudo-transverse” waves are those waves whose amplitude A is orthogonal to N. Here, we consider
“pseudo-longitudinal” and “pseudo-transverse” inhomogeneous waves, and analyze the possibility of circularly polarized
waves. Circularly polarized waves are possible if and only if the secular equation (7) has a double root.

PSEUDO-LONGITUDINAL WAVES

Pseudo-longitudinal waves (N × A = 0) are only possible when N satisfies the condition[1] N × QN = 0. This is a
condition on the bivector C. From (3), it is easily seen that this reduces to N × DN = 0, which means that DN has to
be parallel to N, and thus

(D1N1)/N1 = (D2N2)/N2 = (D3N3)/N3 . (8)



Because one or two of the components of N may be zero, three possibilities have to be considered. Here we consider only
the general case general when N1N2N3 �= 0 for which circularly polarized waves are possible. In this case, the conditions
(8) reduces to D1 = D2 = D3. These are two equations for the ratios C2/C1 , C3/C1. The real solutions yield acoustic
axes of the crystal[3], along which circularly polarized homogeneous waves may propagate. However, depending on the
elastic stiffnesses, complex solutions are also possible. These yield bivectors C for which the secular equation has a
double root. The corresponding solutions are given by

w1 = D1 + N · N , A1 = N ; w2 = w3 = D1 , N · A = 0 . (9)

The solution (w1, A1) represents a pseudo-longitudinal wave, whilst the solution (w2, A) represents a pseudo-transverse
wave with an arbitrary amplitude A orthogonal to N. In particular, for this wave, A may be chosen to be isotropic,
A · A = 0 and then, the wave is circularly polarized.

PSEUDO-TRANSVERSE WAVES

Pseudo-transverse waves (N ·A = 0) are only possible when N satisfies the condition[1] (N×QN) ·Q2N = 0, which
means that N, QN, Q2N are linearly dependent. From (3), it is easily seen that this reduces to (N × DN) · D2N = 0,
which may be written explicitly as[1]

N1N2N3(D1 − D2)(D2 − D3)(D3 − D1) = 0. (10)

Two possibilities have to be considered, namely when one of the Ni is zero, or when two of the Di are equal. As an
example, we here present results for the case D1 = D2. In this case the secular equation (7) is factored so that we have
the solution

w1 = D1 , A1 = (−N2, N1, 0) , (11)

whilst the two other roots w = w2, w3 of (7) are the roots of the quadratic

(w − D3)(w − D1 − N · N) + N2
3 (D1 − D3) = 0 . (12)

Clearly, (11) represents a pseudo-transverse wave (N · A = 0). The two roots of (12) yield two other wave solutions.
Circularly polarized waves are possible either (a) when w1 given by (11) is also a root of of the quadratic (12), or (b)
when the quadratic (12) has a double root.
Case (a) The root w1 = D1 is also a root of (12) when

(D1 − D3)(N2
1 + N2

2 ) = 0 . (13)

We note that for inhomogeneous waves, (13) may be satisfied by choosing N2 = ±iN1. In this case, there is a simple
infinity of isotropic eigenbivectors corresponding to the double root w1 of the secular equation (7). We have

w1 = D1 , A1 = (±i,−1, 0) . (14)

This solution represents an inhomogeneous plane wave which is circularly polarized in the x1x2-plane.
Case (b) The quadratic (12) has a double root when
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For inhomogeneous waves, this condition may be satisfied by requiring that
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2 )1/2N3 . (16)

We here assume N1N2N3 �= 0. Then, when (16) is satisfied, the secular equation (7) has a double root w, and corre-
sponding to this double root there is a simple infinity of isotropic eigenbivectors A. These are given by

w =
1
2
(D1 + D3 + N · N) , A = (iN1, iN2,±(N2

1 + N2
2 )1/2) . (17)

This solution represents a circularly polarized inhomogeneous plane wave. Using (5) and (6), the results may be explicited
in terms of the elastic stiffnesses.
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