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Summary In contradsitinction to deterministic continuum mechanics, we consider wavefronts whose thickness is smaller than the 
Representative Volume Element (RVE) size. As a result, the wavefront is an object more appropriately analyzed as a Statistical Volume 
Element (SVE) rather than an RVE, and therefore to be treated via a stochastic, rather than a deterministic, dynamical system.  
 

INTRODUCTION 
 
In conventional deterministic continuum mechanics, wavefronts are commonly modeled as singularity surfaces 
traveling in homogeneous media. Although a wavefront's thickness is very thin - mathematically infinitesimal, indeed - 
the ensuing analyses assume that the Representative Volume Element (RVE) size is even smaller (!) and no 
consideration of material spatial randomness is made. Whereby a typical grains' size d  is supposed to tend to zero 
relative to the wavefront's thickness L. In contradistinction to that classical approach, just like in our previous studies 
[1, 2] we consider the wavefront as an object much more appropriately analyzed as a Statistical Volume Element 
(SVE). Our focus is primarily on acceleration wavefronts, and there are two entirely new aspects considered in the 
present study. One is the explicit consideration of spatial randomness and various cross-correlations of the 
instantaneous modulus, the dissipation coefficient, the instantaneous second-order tangent modulus, and the reference 
state mass density. The second new facet is the coupling of these four random fields to the wavefront amplitude: as the 
amplitude grows, the wavefront gets thinner tending to a shock, and thus the material heterogeneity shows up as an ever 
`stronger' random field. 

 
BACKGROUND 

 
Acceleration waves are generally governed by the Bernoulli equation [e.g. 3] 
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Here x is position, α is jump in particle acceleration, while the coefficients µ and β represent, respectively, two effects: 
dissipation and elastic non-linearity. The most interesting aspect of acceleration waves uncovered through this equation 
is that, due to the competition between these two effects, there is a possibility of blow-up, and hence, of shock 
formation in a finite distance ∞x , providing the initial amplitude 0α  exceeds a critical amplitude cα ; ∞x  is called the 
distance to blow-up. 
The explicit formulas for the dissipation coefficient, the nonlinear amplification coefficient, and the velocity of 
acceleration wave are [3] 
 

 
R

R G
c

GG
E

G
G

ρ
ρ

βµ 0

00

0

0

'
0 ,

2

~
,

2
=−=−=        (2) 

 
where 0G  is called the instantaneous modulus, '

0G  is the coefficient responsible for dissipation, is 0
~E  the 

instantaneous second-order tangent modulus, and Rρ  is the mass density in the reference state. The dynamical system 
(1) is driven by these four basic material coefficients, and, given their randomness, both cα  and ∞x  are random 
processes. 
 

BERNOULI EQUATION PERTURBED BY VECTOR RANDOM PROCESS 
 
Wavefront evolution is governed by a stochastic differential equation 
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driven by a four-component random process ],~,,[ 0
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where ⋅  denotes the mean value, 4

1)],([),( == ii xXx ωωX  is a standard Gaussian vector random process with zero 
mean value 0),( =ωxX  ( 0),( =ωxX i ), variances 1var =iX , and positive defined correlation matrix 

),(),()( ωω xxXxXxK jiij ∆+=∆ , Ω∈ω  where Ω  is an element of the probability space },,{ PFΩ . We assume 
that parameters iS  satisfy condition 0.1<<iS . Upon transformations, we may write: 
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so that the 1-D statistics of ),( ωµ x  and ),( ωβ x , and of cα  and ∞x , may be determined from 4

1)],([ =ii xX ω . The 
first case which we investigate in depth is that of all )'(xX i s being a stationary Ornstein-Uhlenbeck (O-U) process 

),( ωxU  with a correlation function |)|exp()( 2 xaxK UU ∆−=∆ σ  where 12 =Uσ , whereby the dynamical system is 
 

 ( ) ( ) )(2,),(),( 2 ωαωβαωµα
xdWaaUdxdUxUxU

dx
d

+−=+−=    (6) 

 
with )(ωxW  being the standard Wiener process; 0)0( αα ==x . As an example, Fig. 1 shows the probability densities 
of ∞x  at various values of parameter a, all obtained via the method of Winterstein (e.g. [1]) for first four statistical 
moments of ∞x  obtained as result of Monte Carlo simulations of equations (6) where O-U process starts from its 
stationary state. The cases when processes 4

1)],([ =ii xX ω  are independent or slightly correlated will be also reported 
during the presentation. 
 

COUPLING OF THE AMPLITUDE OF AN ACCELERATION WAVE WITH MEDIUM�S SPATIAL 
RANDOMNESS 

 
We now modify the original Bernoulli equation (6) by introducing the coupling between the processes ),( ωα x  and 

),( ωµ x , ),( ωβ x  in the following way 
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Thus, as α grows, so does the variance of the driving random fields µ and β, and decreases their correlation length. Of 
course, in the particular case of the Ornstein-Uhlenbeck process, r=1/a. Figure 2 shows comparison of distribution 
functions of ∞x  (for small probabilities) when there is no coupling vis-à-vis when there is coupling as modelled here. It 
is seen that the introduction of coupling causes growth of the probability of blow-up by up to factor two for the 
considered values of parameters. Related effects on cα  will also be reported orally. Our presentation will end with an 
extension of the concept of SVE to shock waves in random media and with the setup of a corresponding stochastic 
dynamical system governing their evolution. 
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Figure 1. Probability densities  of ∞x  for different values of 
parameter a in uncoupled model (6). 
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Figure 2. Distribution function of ∞x  for uncoupled model (6) (curve 
(1)) and coupled model (7) (for curve (2): 05.021 == CC ,  

and for curve (3): 1.021 == CC ) 
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