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Summary Reflection and transmission of mechanical waves are investigated for a viscoelastic layer sandwiched between
homogeneous elastic half-spaces. On the basis of appropriate boundary conditions for the layer, uniqueness is established
for C? solutions to the initial/boundary-value problem in the space-time domain.

INTRODUCTION

This paper investigates the reflection and transmission of waves, in the time domain, generated by a viscoelastic
(anisotropic) layer sandwiched between homogeneous elastic half-spaces. The problem is regarded as a initial /bound-
ary-value problem for the layer. At least on a interface, both the incident and the reflected/transmitted waves
occur simultaneously and hence we cannot pick part of the boundary where the solution is known. This explains
why ordinarily existence and/or uniqueness results are lacking in reflection-transmission problems.

The approach presented in this paper follows an energy method and is based on two main steps. First, the boundary
conditions for the layer are written in a form which accounts directly for the outgoing character of the (unknown)
reflected and transmitted waves. Second, an energy functional is considered for the viscoelastic layer which is a
potential for the traction. As a result, uniqueness is established for C? solutions in the space-time domain.

Notation and assumptions

Consider a layer of thickness L sandwiched between two half spaces. Let z be the Cartesian coordinate such that
z € (0,L) is the layer and z < 0 and z > L are the half spaces. Let u(x,¢) on R®> x R be the displacement. We
disregard body forces and write the equation of motion as

pdiu=V- T

where p is the mass density, T is the symmetric Cauchy stress tensor and 9; denotes (partial) time differentiation.
To account for viscoelasticity we let T be given by the gradient of displacement, Vu, in the form

T(x,t) = Go(x)Vu(x,t) + /000 G'(x,n)Vu(x,t —n)dnp

where the values of Go and G’ are fourth-order tensors and G'(x,-) € L*(R*). We also assume that Vu(x, ),
ou(x,-), Otu(x, ) € L'(R). Both Gy and G’ are required to satisfy the minor and major symmetries. The
traction, at the planes z = constant, is denoted by 7 = Tes, e3 being the unit vector of z. In the elastic half-spaces
z<0and z > Litis G' =0. In the layer z € (0,L) both Go and G’ are allowed to depend on x only through z
(axial inhomogeneity). Thermodynamics requires that Gg be positive definite. We also assume that G’ is negative
semidefinite.

For isotropic solids the governing equations decouple [1]. The present approach for anisotropic solids leads again
to decoupled equations, in the elastic homogeneous half-spaces, by using the eigenvectors of the acoustic tensor.

EQUATIONS FOR ANISOTROPIC SOLIDS AND NORMAL INCIDENCE

Assume that p and G, G’ depend on x through z and u = u(z, t), which is the case if the incident wave is normal.
Hence the equation of motion becomes

pdiu = 0.[(Qo + Q'%)0.u], z € (—00,0) U (0,L) U (L, c0),

where * means convolution in R* and Qo = e3Goes and likewise for Q'; in suffix notation Q}, = Gls;,. As the
half-spaces are elastic and homogeneous we can write Q' = 0 and Qg = constant as z € (—00,0) U (L, 00).
Letting a;,as, a3z be the eigenvectors of Qo we find that

3
u(z,t) = Z[uf(z,t) +ub(z,t)a, z € (—00,0) U (L, 00)

r=1

where the superscripts f and b are reminders for forward- and backward-propagating d’Alembert’s solutions [2].
Now, for any function h(z % ct) we have 0,h 0;h = +¢(9.h)?. Hence for any component uf and u’ we have

d.ul ol <0,  A.uboub >o0.



For definiteness we let the incident wave come from z < 0 and then the reflected and transmitted waves take the
general form

3 3
t) = Zufn(z,t)ar, 2 <0, u”(z,t) = Zu{(z,t)ar, z> L.

Hence, because 7 = Qo0 u we find that the power 7 - 9;u for the reflected and the transmitted waves satisfies the
inequalities

3 3
B = Z qrc’)zuf, atufn >0, 770" = Z qrc’)zuf atuff <0
r=1 r=1
where ¢1, g2, q3 are the positive eigenvalues of Qg, in the pertinent half-space.

Energy functional
Let u € C?((—00,0) U (0,L) U (L,0) x R"). For any point x of the layer, 2 € (0,L), and time ¢, consider the
functional

¥ (9.u(t),d.u’) = %azu(t) - Qo0 u(t) — %/Ooo[azu(t — &) —d.u(t)] - Q'[o.u(t — &) — d,u(t)]d¢

the dependence on x being understood and not written. A direct calculation shows that ¥ is the potential for the
traction,

ov
S = Qo) / Q'(&)0.u(t — £)dt = (b).

Consider the energy E(t) for the layer in the form

/{ plou (1) + ¥(d.u(t),d.u’) fde.

The assumption that (Q')" be positive semidefinite, integrations by parts and use of the symmetry of Qo, Q" allow
us to find that the time derivative E is bounded by

E(t) < T(L_,t) - 8yu(L_,t) — 7(0,,t) - Bu(0,,1).

UNIQUENESS FOR THE REFLECTION-TRANSMISSION PROBLEM

The reflection-transmission problem P consists in finding a function u(z,t) € C?((—o0,0) U (0, L) U (L, 00) x R*)
such that u(z,t) = 0,z € R,t < 0 whereas u, T are continuous everywhere and the incident wave u’ is known so
that u’(0_,t) = w(t), t > 0. Uniqueness is proved first for the layer z € (0, L) and next for the half-spaces z < 0,
z > L.

Theorem 1 (Layer) The restriction to z € (0, L) of the solution u to P is unique in C*((0,L) x R").

Proof. Let u;,us be two solutions to P and 71,75 the associated tractions. The differences v = u; — us and
o = T, — T3 satisfy the equation 9,0 = pd?v as z € (0,L), t > 0, the initial condition v(z,0) =0, 2z € [0, L] and
the inequalities o - 9yv > 0 as z =0, and o -9;v < 0 as z = L_. The energy of the layer E(t) associated with v is
shown to satisfy E(t) > 0, E(0) = 0, and E < 0. This implies the vanishing of £ in R* and hence the vanishing of
v in [0, L] x R*. This in turn implies uniqueness. |

Because u is unique as z € [0, L] and u is continuous then u(0_,¢) and u(L,,t) are unique.

Theorem 2 (Half-spaces) For every finite T > 0 the solution u to P subject to u(0_,t) = ¢(t), u(L,,t) = {(t),
t <0 and u(z,0) = 1(z), z € (—0,0] U [L,0), whereas u(z,t) has compact support as t < T, is unique in
C?((—00,0) U (L,00) x [0, T]).

Proof. The difference v of two solutions has compact support and is subject to v(0_,¢) =0, v(L,,t) =0, ¢ > 0,
v(2,0) =0, z € (—00,0_) U (L,,00). Consider the energy of the half-space z < 0, E_(t), associated with v. We
find that E_(t) = o(0_,t) - 8;v(0_,t) = 0. Because E_(t) > 0 and E_(0) = 0 it follows that E_(t) = 0, t € [0,T].
Hence we conclude that u is umque as z € (—o00,0]. Likewise we establish uniqueness for z € [L, 00). O

Uniqueness is shown to hold also if the half-space z > L is replaced by a fixed boundary, u(L,t) = 0, or a free
boundary, 7(L,t) = 0.
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