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Summary The adiabatic heating due to conversion of plastic work into thermal energy substantially changes the 
boundary value problem of plastic wave propagation. The thermal coupling in plastic wave propagation  leading to 
adiabatic wave trapping is the main subject of this study. Two cases are analysed, the adiabatic wave trapping in tension 
and also in shear. The case of shear  is relatively new. Theory, experiments and numerical analyses of the Critical 
Impact Velocity (CIV) in shear is the main part of this contribution. A review of  author’s recent publications on CIV in 
tension and shear is presented. 
 

INTRODUCTION 
 
In the late forties of the last century von Kàrman [1-3] and others developed a theory for propagation of one-
dimensional plastic waves in a slender bar. It was demonstrated that if a long bar is loaded in tension by a sufficiently 
high impact velocity , plastic deformation is concentrated near the impact end of the bar. The theory was limited to rate-
independent and isothermal case. However, plastic deformation of materials is rate and temperature dependent. The 
adiabatic heating  causes usually a material softening leading to adiabatic wave trapping. Localization of plastic 
deformation in adiabatic conditions superimposed on inertia effects (waves) causes that the plastic wave speed reaches 
zero and the Critical Impact Velocity (CIV) appears. It is shown that the CIV can occur in both tension and shear. The 
case of shear has been found and analysed more recently [5-10].  

 
CRITICAL IMPACT VELOCITIES IN TENSION AND SHEAR 

 
The Critical Impact Velocity in tension 
 
In the previous analysis of the CIV in tension the adiabatic heating was neglected. A more complete and closer to the 
reality of fast plastic deformation is assumption of the adiabatic deformation. The equation of heat conduction with 
internal sources applicable to dynamic plasticity is given by 
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where ρ , Cp , β and λ are respectively the density, specific heat, Taylor-Quinney coefficient and thermal conductivity, 
εp and  σ are respectively the plastic strain and true stress, the direction of the heat conduction is  x1 . In fast processes 
of plastic deformation it can be assumed that the conductivity is zero, then one yields 
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 where ∆TA=T-T0 , T0 is the initial temperature. Here is assumed that the strain rate is a parameter. The standard wave 
equation is given by  
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where  C0 is the slender-bar elastic wave speed in  the x1 direction, E is the Young’s modulus. In the adiabatic 
conditions the tangent modulus  (dσ/dεp )A versus plastic strain for most of metals and alloys is lower than the 
isothermal. Therefore, the speed of plastic waves in the adiabatic conditions is lower than in the isothermal case. A 
simple evaluation of the adiabatic tangent modulus was given in [4]. If constitutive relation is explicitly 
known the adiabatic tangent modulus is given by 
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The critical impact velocity in tension can be found by applying the method of characteristics [3,5]. The CIV in 
adiabatic conditions is therefore obtained in the following form 
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It is clear that εm is the instability point of the adiabatic stress vs. total strain curve at  predefined value of strain rate . 
Theoretical values of CIV in tension are close to that found from experiments, for example [3,5]. Values of this material 

ε&



constant (CIV) vary in the following limits  60 m/s < VCR < 200 m/s. In single crystals of Al : 30 m/s < VCR < 90 m/s 
depending on orientation, [5].   
 
The Critical Impact Velocity in shear 
 
Localization of plastic deformation during fast shearing by Adiabatic Shear Bands (ASB) is a common failure mode in 
many materials. If the rate of shearing is sufficiently high the adiabatic process of  deformation is superimposed on 
propagation of plastic waves in shear and it leads to failure near the area of impact. In that case the plastic waves 
propagate in  x2  direction and displacement is in  x1  direction.  The wave equation is given by 
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where C2 is the elastic wave speed in shear, C2p is the plastic wave speed, and  τ and Γp are respectively the shear stress 
and plastic shear strain. It should be noted that in this case there is no change of the current surface where the shear 
stress is imposed and the instability and localization are triggered exclusively by adiabatic softening. The CIV in shear 
is relatively a new subject of research and was introduced and discussed in [6] and [7]. An analytical model has been 
developed in [6] and [7], according to that analysis the CIV in shear is given by 
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where Γe  is the elastic shear strain at the yield limit and  Γm  is the localisation strain in the adiabatic conditions of 
deformation. It must be remembered that all derivations are for a constant strain rate, characteristic for the process 
range, that is  5.102 1/s < < 10Γ& 3 1/s. Experiments performed at LPMM with the direct impact Modified Double Shear 
(MDS) technique, [8], confirmed existence of the CIV in shear for many metals and alloys. Numerical analyses by FE 
code with complete wave propagation scheme and thermal coupling also confirmed existence of CIV in shear for  VAR 
4340 steel and Ti-6Al-4V alloy, [9,10]. Values of  CIV for those alloys determined by FE analyses are respectively 103 
m/s and 121 m/s.    

CONCLUSIONS 
 
Existence of the Critical Impact Velocities in tension and shear has been confirmed by theoretical, experimental and 
numerical means. The analysis of CIV in tension has been improved by introduction of thermal coupling in the form of 
adiabatic heating. The phenomenon of CIV in shear is relatively new. A complete analysis of the CIV in shear with 
thermal coupling (adiabatic process of deformation) has been performed in [11].  It was found that an unique 
superposition of  plastic shear waves and adiabatic softening triggers this phenomenon. Both, CIV in tension and shear 
can be assumed as specific material constants. 
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