Non-destructive testing of wood by wave propagation
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Summary In this paper the determination of the material properties of a rectangular wooden bar is presented and the
detection of defectsin the bar is discussed. The material properties of the bar are evaluated by theoretical and measured
dispersion curves using parametric model fitting. A numerical finite difference model with second- and fourth-order
approaches is developed. To detect a defect a numerical time-reversal experiment using this model is discussed.

INTRODUCTION

Non-destructive testing of wood is challenging because of its anisotropy and inhomogeneity. It can be tested by ultra-
sonic wavesin high (>1 MHz) [1] or in deep (< 100 kHz) frequency range. In high frequency range the waves are not dis-
persive but wood has a high damping. A simple “time-of-flight* method can be used on asmall cube but it is difficult to
test a few meters long bar. Furthermore in this frequency range the wavelength and the natural inhomogeneities, like
annual rings, are in the same range, thus they can disturb the measurement.

In low frequency range the damping is weaker and the wavelength is longer but the waves become to be dispersive. A
larger bar can be tested and the inhomogeneities do not disturb the measurement but the “time-of-flight“ method can not
be used. The velocity change caused by dispersion has to be considered for the testing.

PROBLEM STATEMENT

Let us consider a wooden bar with rectangular cross-section. Wood will be modeled as an orthotropic material and the
main directions of the orthotropy are parallel to the sides of the bar. The dimensions of the bar are 2700x20x25 mm.

In the first case we are interested in the material properties of the bar. Theoretical and experimental dispersion curves of
the bar will be determined and the material properties will be evaluated by parametric model fitting. In the second case
we are interested in detecting a defect in the bar. A numerical finite difference model with second- and fourth-order
approaches is developed and a numerical time-reversal experiment using this model is discussed [5].

DETERMINATION OF THE MATERIAL PROPERTIES
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A semi-analytical finite element method [2] is applied to determine
the dispersion curves of the bar. The cross-section of the bar is dis-
cretized by two-dimensional finite elements and in the longitudinal
direction harmonic functions were applied. The following displace-
ment functions were used:

u(x,y,z,t) = N(x,y)cos(wt +kz)

V(X Y,z t) = N(x, y)cos(wt + kz) ~— LT

w(Xx Y,z t) = N(x y)sin(wt + kz)
where u, v and w are the displacements in x-, y- and zdirections,
N(x,y) denotes the biquadratic approximation function, wthe angular 50
frequency, k the wave number and t the time. This leads to an eigen-
value problem:

Demodulator]
OFV3001 /

beam

Pos. system ‘ |
UNIDEX 511

Wooden

Funct. generator |
DS345 /=

s

Amplifier
KH 7500

N
(=]

(K (k) — M (k))v = 0

in which K denotes the stiffnes-, M the mass matrix, and v the dis-
placements of the nodes. The eigenvalues of this equation system are
the quadrates of the eigenfrequencies w for the wave number k;.
Solving this eigenvalue problem for different wave numbers k;
results in a dispersion diagram. obf
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Evaluation of the dispersion curves from measurements

The measurement setup on Fig. 1. was used to detect the displace-

ments of the bar. The measur_eme_nt processes are rep_eated in f_ew Figure 2. Experimental dispersion curves com-

hundred points along the longitudinal axis. Using the linear predic- pared to the theoretical curves evaluated

tion method [4] the dispersion curves of the bar were evaluated from with the determined material properties:

the measurements (black points on Fig. 2). Cpp=1505 N/mm?,  C33=15073 N/mm?,
C4=480N/mm?,  Cg5=1350 N/mm?,
Cgs=1410 N/mm?.
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Parametric model fitting

The total least squares method [1] was applied to evaluate the material properties. The dispersion relation is the relation-
ship between material parameters (©) and measurement data z(w k), in implicit form: f(©,2)=0. In our case there is no
analytical relationship, a numerical one was used: f(©,2)=axg-ah, the difference between the calculated (eigenvalue
problem) and the measured frequencies. The problem was linearized and solved by the Lagrangian multiplier method [1].
To distinguish between the points of the different wave modes and the points which do not represent awave mode a sta-
tistical test [1] was applied to classify the pointsinto inlier and outlier. The results are presented on Fig. 2.

SIMULATION OF THE WAVE PROPAGATION BY FINITE DIFFERENCES

The applied governing equations are the equations of motion, the ortho-
tropic materia’s law and the kinematic relations:

Oij,i = PYj - 0i; = Ciju€a &j = %(Ui,j“”uj,i)-

The equations are discretized in space and time domain by second- and
fourth-order finite differences on a staggered grid [5]. The second-order
finite difference approach of the first derivative of u, with respect to x
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and second derivative of it with respect to t are:
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wherei, j and k denote the indices of the cell on the grid. The derivatives _. o .
f d ith ivel be calculated i . Figure 3. Theoretical dispersion curves determined by
of uy and u, with respect to X, y, z, respectively can be calculated inasim- the semi-analytical finite dlement method

ilar way. A fourth-order approach was applied in space for thefirst deriv- and experimental ones by simulation (ortho-
aive: tropic bar, second-order approach).
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The model was verified by the dispersion curves. In a virtua measure-
ment the displacements of the bar in the simulation were detected. The
dispersion curves of the bar were determined by the linear prediction
method and compared to the theoretical curves (Fig. 3.). Figure 4. Playing back and focusing of the waves (iso-
The finite difference model can be applied in a numerical time-reversal tropic plate, second-order approach).
experiment [5] to detect a defect in a structure. By this method structural
waves in the bar are excited in an experiment and the displacements are recorded in several points. The recorded signals
including the reflections from the defect are played back in the numerical model of the structure, and the waves interfere
just at the position of the defect.
A numerical example of thistechniqueis presentedin Fig. 4. A notch isimplemented in the finite difference model in the
middle of an isotropic plate. Longitudinal waves are excited. Waves are detected in a virtual measurement at the end of
the plate and than reversed in the time domain and played back in the numerical model without notch (Fig. 4). Limita-
tions of this method should still examined especialy the influence of the orthotropy and of the frequency content com-
pared to the geometrical dimensions (slenderness) of the bar.

CONCLUSION

Experimental and theoretical determination of the dispersion curves are presented. It is shown that the material properties
of awooden bar could be determined using the dispersion curves and parametric model fitting. The wave propagation
phenomenon was simulated by second- and fourth-order finite differences. A notch was implemented in the model and a
numerical time-reversal experiment is considered in the isotropic case.
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