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RAYLEIGH-LIKE SURFACE WAVES ON A NONLINEAR LAYERED ELASTIC HALF SPACE
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Summary Nonlinear modulation of Rayleigh-like Surface Waves on a layered half space is examined by employing an asymptotic
perturbation method. It is shown that the first order slowly varying amplitude of the wave modulation is governed by a nonlinear
Schrödinger (NLS) equation. Then the effects of material nonlinearities on the existence of bright (envelope) and dark (hole) surface
solitons are discussed for both hypothetical and real material models.

FORMULATION OF THE PROBLEM

Recently, the propagation of nonlinear Rayleigh-like surface waves on a layered elastic half space has been the subject
of several investigations [1,2,3]. In these works mainly the propagation of long nonlinear waves are considered and
Benjamin-Ono (BO)-like evaluation equations are derived to describe the wave field asymptotically. Then the existence
of nonlinear periodic and solitary wave solutions are discussed via BO-like equations. These examinations are restricted
effectively to the small wave number, low frequency region since the layer is assumed to be thin and in some works also
is assumed to be linear [2.3]. In this work, the problem is investigated for a finite nonlinear layer.
In a rectangular frame (X,Y ,Z), it is assumed that the layer occupies the region between the planesY =h andY =0 and
the half space lies in the regionY <0, whereh>0 represents the thickness of the layer. Then the Rayleigh waves are
supposed to propagate along the positiveX-axis and their displacements lie in the (X,Y )-plane, the saggital plane. Thus
the equation
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represent the wave motion, whereu
(ν)
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2 are the displacement components inX andY directions,(x, y, z) are the

spatial rectangular coordinates andt is the time. Here and henceforth superscript valueν=1 refers to the layer andν=2
to the half space. The constituent materials are assumed to be homogenous, isotropic and compressible elastic, and the
stress constitutive relations are taken in the following quadratic nonlinear form;
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whereTKk is the first Piola-Kirchoff stress tensor,EKL is the linear Lagrangian deformation tensor andλ, µ are the Làme
andl,m,n are Murnaghan constants. In the absence of body forces, the equations of motion in the reference state are
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where the subscripts preceded by comma indicate partial differentiation with respect toX or Y and an over-dot represents
the partial differentiation with respect to t. The free boundaryY =h of the layered half space is assumed to be traction
free and stresses and displacements are continuous at the interfaceY =0 and the displacements tend to zero as the depth
increases. Hence the following boundary conditions are written;
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THE NONLINEAR MODULATION OF RAYLEIGH-LIKE WAVES

To investigate how the slowly varying amplitude of a weakly nonlinear Rayleigh-like wave is modulated by nonlinear self
interaction, the method of multiple scales is employed. For this purpose, the new independent variables

xi = εiX , yi = εiY , ti = εit i = 0, 1, 2, (5)

are introduced whereε > 0 is a small parameter representing the weakness of the nonlinearity.{x0, y0, t0} are fast
variables describing the fast variations in the problem while{x1, x2, y1, y2, t1, t2} are slow variables to describe the slow
variation. The displacementsu(ν)

1 andu
(ν)
2 are assumed to be functions of these new variables and they are expanded in

the following asymptotic power series inε [4];
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Then following the usual procedure of an asymptotic analysis a hierarchy of problems to determineu
(ν)
1n andu

(ν)
2n are

obtained. These problems, at each step, are linear and the first order problem is simply the classical linear wave problem



in a layered linear elastic half space [5]. This first order problem is solved by assuming that the phase velocityc of
the waves satisfies the inequalityc1T

< c1L
< c < c2T

< c2L
wherecνL

andcνT
denote linear longitudinal and shear

wave velocities in the layered half space. Under these assumptions and since also the harmonic resonance phenomena is
excluded in the analysis the solutions are found as
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where a "c.c." symbol denotes the complex conjugate of the preceding terms andA1 is the complex function of the
slow variables{x1, x2, t1, t2} representing the first-order slowly varying amplitude of the wave modulation. Also,φ =
kx0−ωt0, pα =(c2/c2

1α
−1)1/2, vα =(1−c2/c2

2α
)1/2, (α=L, T ), andRi’s are some constants. Obviously, to complete the

first order solutionsA1 has to be determined. This can be achieved by examining the higher order perturbation problems.
A compatibility condition in the second order perturbation problem related with the fundamental mode yields that

A1 = A1(x1 − Vgt1, x2, t2) (8)

i.e.,A1 remains constant in a frame of reference moving with the group velocityVg of the waves. And then a compatibility
condition in the third order problem related with the fundamental mode yields the following equation forA=kA1;
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whereτ = ωt2, ξ = k(x1 − Vgt1), Γ = k2

2ω
d2ω
dk2 and the coefficient∆ depends on nonlinear material parameters. The

equation (9) is a NLS equation and it is derived in various branches of science and engineering to describe the nonlinear
self modulation of waves asymptotically.

CONCLUSIONS

It is known that the stability of the solutions of the NLS equation describing the asymptotic wave field and the existence
of various types of soliton solutions depend on the sign of the product of the coefficients of the dispersion term,Γ, and
the coefficient of the nonlinear term,∆. Therefore to investigate the dependence of the sign ofΓ∆ on the nonlinearity of
the constituent materials, the numerical evaluation of this product with respect to the wave number is performed by fixing
the linear material constants. The behavior ofΓ and∆ are also analyzed in the limit ash → 0 and for fixedk, i.e. in
the thin layer limit. It has been observed that, in this limit the behavior of∆ is dominated by the nonlinear properties of
the half space, but ash increases (orkh grows) the effects of the nonlinear properties of the layer on∆ begin to increase.
It has been also observed that, depending on the linear properties of the layered half space, in the neighbourhood of the
critical wave numberkc satisfying the second harmonic resonance condition,|∆| grows without bound, i.e.,|∆| goes to
infinity ask → kc. Also, in the thin layer limit|∆| grows without bound for the layered half-space models whose half
space made of a nonlinear material. But, if the half space is linear then∆ goes to zero in this limit. These results also
indicate that in the thin layer limit, the nonlinear properties of the half space dominates the nonlinear wave modulation.
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