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RAYLEIGH-LIKE SURFACE WAVES ON A NONLINEAR LAYERED ELASTIC HALF SPACE
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Summary Nonlinear modulation of Rayleigh-like Surface Waves on a layered half space is examined by employing an asymptotic
perturbation method. It is shown that the first order slowly varying amplitude of the wave modulation is governed by a nonlinear
Schrédinger (NLS) equation. Then the effects of material nonlinearities on the existence of bright (envelope) and dark (hole) surface
solitons are discussed for both hypothetical and real material models.

FORMULATION OF THE PROBLEM

Recently, the propagation of nonlinear Rayleigh-like surface waves on a layered elastic half space has been the subject
of several investigations [1,2,3]. In these works mainly the propagation of long nonlinear waves are considered and
Benjamin-Ono (BO)-like evaluation equations are derived to describe the wave field asymptotically. Then the existence
of nonlinear periodic and solitary wave solutions are discussed via BO-like equations. These examinations are restricted
effectively to the small wave number, low frequency region since the layer is assumed to be thin and in some works also
is assumed to be linear [2.3]. In this work, the problem is investigated for a finite nonlinear layer.

In a rectangular frameX(,Y,7), it is assumed that the layer occupies the region between the @arieandY =0 and

the half space lies in the regidri<0, whereh>0 represents the thickness of the layer. Then the Rayleigh waves are
supposed to propagate along the posifiis@xis and their displacements lie in th¥ {")-plane, the saggital plane. Thus

the equation

e=X+uP(X,V,t), y=Y +(X, Y1), =2 (1)

represent the wave motion, wheﬁé’) andug’) are the displacement componentsXirandY” directions,(z, y, z) are the

spatial rectangular coordinates anig the time. Here and henceforth superscript valaé refers to the layer and=2

to the half space. The constituent materials are assumed to be homogenous, isotropic and compressible elastic, and the
stress constitutive relations are taken in the following quadratic nonlinear form;

Ticr= [AETE)+ Sup arup s+ 3 (614 3m-+n) (trE)? — L (m+n) (0rE)]dxe+ [20 — (m + n)

< (2)
(trE)| Ex 1ok + [MNrE) |up,k + 2uEk pug, L+ pup kUp, 100k + nExNENLOLE

whereT k. is the first Piola-Kirchoff stress tensdi 1, is the linear Lagrangian deformation tensor ang are the Lame
andl,m,n are Murnaghan constants. In the absence of body forces, the equations of motion in the reference state are

Thrls = poiis” Ty = poiis” v =12 (3)

where the subscripts preceded by comma indicate partial differentiation with respéoirts and an over-dot represents
the partial differentiation with respect to t. The free boundgr of the layered half space is assumed to be traction
free and stresses and displacements are continuous at the inléfa@nd the displacements tend to zero as the depth
increases. Hence the following boundary conditions are written;

TQ(P:O, Tz(é):o on Y=h and u(12),ué2) — 0 asY — —oo
V=P uf=ul? and T =72 T =T{2 ony =0. (4)
THE NONLINEAR MODULATION OF RAYLEIGH-LIKE WAVES

To investigate how the slowly varying amplitude of a weakly nonlinear Rayleigh-like wave is modulated by nonlinear self
interaction, the method of multiple scales is employed. For this purpose, the new independent variables

=X, y=€Y, ti=€t i=0,1,2, (5)

are introduced where > 0 is a small parameter representing the weakness of the nonlinedsityyo,t} are fast
variables describing the fast variations in the problem whilg z-, y1,y2, t1, t2} are slow variables to describe the slow
variation. The displacememé”) andué”) are assumed to be functions of these new variables and they are expanded in
the following asymptotic power seriesdrf4];

u(lu) :Z EHUgZ) ’ u(21/) :Z enugl). (6)
n=1 n=1

Then following the usual procedure of an asymptotic analysis a hierarchy of problems to detei’;fﬂaad uéﬁl) are
obtained. These problems, at each step, are linear and the first order problem is simply the classical linear wave problem



in a layered linear elastic half space [5]. This first order problem is solved by assuming that the phase a&ibcity

the waves satisfies the inequality,. < c¢;, < ¢ < ca,. < c2, Wherec,, ande,, denote linear longitudinal and shear

wave velocities in the layered half space. Under these assumptions and since also the harmonic resonance phenomena is
excluded in the analysis the solutions are found as

U11 —Al[R etfPrLyoy Ry tkPLYo_ po ReetkPTYOL pTR46’ikay°] e+ c.c.
u21 = 1[pLRleLkPLyo —pLRge_ikayU—l— RgeikI)Tyo +R4e—ik’pTyo] eld +c.c.
“11 —Al[R eFvLYot jup ReehvTvo] i c.c.

[ ivg, RyeFvrvoq R6ek”Ty°] e+ c.c.

(7)

where a ¢.c." symbol denotes the complex conjugate of the preceding terms4and the complex function of the

slow variables{z1, zo, t1,t2} representing the first-order slowly varying amplitude of the wave modulation. Also,

ko —wto, po=(c?/c3 —1)'/2, v, =(1—c*/c3 )V/?, (a=L,T), andR;'s are some constants. Obviously, to complete the
first order solutions4; has to be determined. This can be achieved by examining the higher order perturbation problems.
A compatibility condition in the second order perturbation problem related with the fundamental mode yields that

Al = Ar(x1 — Vgty, w2, t2) (8)

i.e.,4; remains constant in a frame of reference moving with the group velugity the waves. And then a compatibility
condition in the third order problem related with the fundamental mode yields the following equatidrfot;;
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wherer = wty, § = k(z1 — Vyt1), I = QW de and the coefficienf\ depends on nonlinear material parameters. The
equation (9) is a NLS equation and it is derived in various branches of science and engineering to describe the nonlinear
self modulation of waves asymptotically.

CONCLUSIONS

It is known that the stability of the solutions of the NLS equation describing the asymptotic wave field and the existence
of various types of soliton solutions depend on the sign of the product of the coefficients of the dispersidn terc,

the coefficient of the nonlinear term\. Therefore to investigate the dependence of the sigivobn the nonlinearity of

the constituent materials, the numerical evaluation of this product with respect to the wave number is performed by fixing
the linear material constants. The behaviol'aind A are also analyzed in the limit é&s— 0 and for fixedk, i.e. in

the thin layer limit. It has been observed that, in this limit the behaviak i§ dominated by the nonlinear properties of

the half space, but dsincreases (okh grows) the effects of the nonlinear properties of the layefAdmegin to increase.

It has been also observed that, depending on the linear properties of the layered half space, in the neighbourhood of the
critical wave numbet:, satisfying the second harmonic resonance conditithgrows without bound, i.e|A| goes to

infinity ask — k.. Also, in the thin layer limit A| grows without bound for the layered half-space models whose half
space made of a nonlinear material. But, if the half space is linearshgoes to zero in this limit. These results also
indicate that in the thin layer limit, the nonlinear properties of the half space dominates the nonlinear wave modulation.
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