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Summary Nonlinear wave processes in shock-loaded elastic-plastic solids are modeled on the basis of the approximate 
equations proposed. It is shown that the equations correctly describe the stress-distribution evolution in both the elastic-flow 
and plastic-flow regions and can be used to solve 1D and 2D problems of pulsed deformation and fracture of elastoplastic 
solids. 
  

THE APPROXIMATE EQUATIONS DESCRIBING PROPAGATION OF NONLINEAR LONGITUDINAL 
WAVES IN ELASTOPLASTIC SOLID  

 
Studying the evolution of nonlinear waves generated by a shock loading of solids is of scientific and practical interest. 
Experiments of this kind are usually performed under conditions corresponding to the stress range from several 
gigapascals to tens of gigapascals. In these cases, the stress amplitude is small in comparison with the bulk modulus but 
exceeds considerably the elastic limit for most metals. Therefore, a set of small parameters can be defined and the 
asymptotic methods known in the general theory of nonlinear waves may be extended to these problems.  
As a result a system of approximate independent nonlinear equations belonging to different directions of longitudinal 
characteristics is obtained. The equations have the form [1, 2] 
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2 / rxxr +=′ , 0/ ttt =′ , 0011 / tCxx =′ ; K1111 σσ =′  and 011 Cuu =′  are the components of the stress tensor 

and velocity vector (K is the bulk modulus, 00 / ρKC = ); ψ makes sense of the dimensionless shear stress; 0t  is the 
characteristic load duration; 0r  is the characteristic size of the loading area. The parameter α is determined from an 

equation of state. Set of small parameters includes the following: ε=Pmax/K, ( )2000 / rtC=∆ε  characterizing the 
transverse divergence of the wave, µ characterizing the internal-friction viscosity and thermal conductivity, ν=2G/K (G 
is the shear modulus) meaning that the stress-deviator components are assumed to be quantities of a higher order of 
smallness compared to the average stress. Indeed for stresses that occur in typical shock-wave tests for metals ε ~ 0.1 
while for the dimensionless components of stress deviator an estimate gives GYGss ijij ⋅≤⋅=′ νν )2(3  ~ 0.01÷0.001, 

where Y is the yield stress.  
The equations (1) are closed by a constitutive equation taking into account the elastic-plastic deformation kinetics of 
solid. For example, the constitutive equation corresponding to the elastoplastic medium of the Prandtle-Reuss type with 
the Mises yield criterion has the form 
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One can see that the nonlinear waves belonging to different directions of longitudinal characteristics are governed 
separately by systems consisting of the transport equation (1) and the constitutive equation of solid. The interaction of 
these (oppositely facing) waves can be described implicitly by nonuniform deformation of the phase variables in the 
solution constructed without regard to the interaction. To describe the interaction, the corrections of order ε and ν are 
introduced into the phase variables 

2,1  ),,(),(( 111
1 =′′+′′Φ+′−′= − itxtxxt iiii νθελξ .                                                           (3) 

Equations for phase functions iΦ  and iθ  taking into account a change of a phase velocity caused by the square-law 
nonlinearity and the elastoplasticity can be written in the form  
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where ( )VtddzC ′= /σ  is the Lagrangian phase velocity associated with the stress profile of longitudinal wave. This 
quantity has clear physical sense and can be measured in experiment (see, for example, [3]).  



  

The equations (1)-(4) are used to solve one- and two-dimensional problems of propagation and interaction of shock 
waves. 
 

PROBLEMS OF PROPAGATION AND INTERACTION OF SHOCK WAVES 
 
 
Reflection of shock wave from a free surface of plate. 
Simulation of the Taylor and Rice experimental data [4, 
p. 29] for 50.8 mm armco-iron plate loaded by 170 m/s 
direct impact is conducted using Eqs. (1), (3), (4) and 
Gilman’s constitutive model. 
Fig 1. Velocity of the free surface versus time: the solid 
curve refers to the numerical solution taking into 
account interaction between the incident and reflected 
waves, dashed curve refers to the numerical solution 
ignoring this interaction, and the dotted curve refers to 
the experimental data. One can see that the solution that 
takes into account the interaction agrees well with the 
experimental data. 
 
Propagation of a two-dimensional shock 
wave in an elastoplastic half-space. 
A shock pulse is produced by detonation of a 
cylindrical tablet of explosive located on the 
half-space. The ratio of thickness of the 
tablet to its diameter is equal to 0,2. Material 
of the half-space is the steel.  
Fig. 2 shows snapshots of the wave (the 
numerical solution) at different distances 
from surface. The elastic precursor and 
elastic unloading are clearly visible. In 
general one can see that the approximate 
equations correctly describe both the plastic 
flow and elastic flow regions.  
 
Simulation of a two-dimensional damage of a plane plate. 
Using Eqs. (1) and (2), we solve numerically the problem 
of the normal-impact damage of a plane plate, produced 
by a cylindrical impactor with a velocity of 185 m/sec. 
Material of the plates is aluminum. The impactor 
thickness is l=1.14 mm and target thickness is L=2.8⋅l. 
The radius of the impactor is r0= 6⋅l. Equations governing 
the evolution of the material damage are taken the same as 
in [5].  
Fig. 3 shows snapshot of the right-hand half of the plate 
cross-section for t=0.856 µsec (the impact is performed 
along the lower surface). Contour lines correspond to the 
specific volume of voids greater than 0,01. The central 
region enclosed by the lines corresponds to the failed 
material. One can see that the impact failure forms a disc-
like crack. 
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