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Summary. The general non-local integral equation involving the statistical averages of stresses in the composite and inclusions of 

random structure functionally graded composite is obtained and solved by three different methods: the quadrature method, the 

iteration method, and the Fourier transform method with subsequent comparative analysis.  The different nonlocal effects are detected, 

some of them are fundamentally new.

For statistically inhomogeneous composites [or functionally graded materials (FGM)], the ergodicity fails and ensemble 

and volume averages do not coincide. The degenerate case of these materials is a random matrix composite for which the 

inclusions are located in a region bounded in some directions, although unrestrictedness of the domain of inclusion 

locations does not preclude statistical inhomogeneity. For example, any laminated composite materials with randomly 

reinforced by aligned fibers in each ply, are the statistically inhomogeneous material. The concept of clusters is similar to 

that of fractal structures, and the role of statistical descriptor can be treated by such parameters as cluster size, the fractal

dimension, and the radius of gyration. The informative characteristics of the random configurations use statistical 

second-order quantities which examine the association fillers relative to other particle in an immediate local 

neighborhood of the reference filler. We will analyze so-called ideal cluster materials where the concentration of 

particles is a piecewise and homogeneous one within the areas of ellipsoidal clouds and composed matrix. In particular, 

in this paper we will consider a single particle cloud with the shape of a thick ply located in an infinite matrix with zero 

concentration of particles. For FGM where the concentration of the inclusions is a function of the coordinates 

( (xi) const.), the micromechanical approach is based on the generalization of the multiparticle effective field method, 

previously proposed for statistically homogeneous (SH) random structure composites (see for references and details [1]). 

The nonlocal integral effective operator of elastic effective properties is estimated. The nonlocal dependencies of the 

effective elastic moduli as well as of conditional averages of the strains in the components on the concentration of the 

inclusions in a certain neighborhood of a considered point are detected. 

The trivial generalization of the approach for statistically homogeneous composites [1] leads to the estimation of 

statistical average of strains inside the inclusions   

                   < >i(x)=Y(x) < > (x)+ K (x)< >i  ,     K x)< >i  = (x,y)[< >i  (y)- < >i  (x)]dy                                 (1)      

as well as effective properties. One obtains the explicit representations of tensors Y(x) and (x,y) as the function of 

conditional probability density of inclusion locations (xj|;xi) and their mechanical properties. The particular cases of the 

nonlocal integral Eq. (1) was solved by three different methods: the quadrature method, the iteration method, and the 

Fourier transform method with subsequent comparative analysis.  For the SH media ( (xi)= const., < > (x) const), the

standard scheme of iteration and Fourier transform methods  permit one to obtain the explicit representations for the 

nonlocal integral and differential operators, respectively, of any order describing overall effective properties as well as 

the stress concentration factor in the components. It is shown that the integral operator reduces to the differential one for 

sufficiently smooth statistical average stress fields and demonstrated the advantage of the iteration method over the 

Fourier transform method. For the FGM, an applicability of the Fourier transform method is questionable (in contrast 

with the iteration method). Only at first glance, the relation (1) is equivalent to the corresponding one obtained for the 

global effective properties in the framework of zero order approximation ( (x,y)=0). The main difference is that Y(x) 

and, therefore, L
*(x)  depends on the parameters of the inclusion distribution not only at the point x, but also in a certain 

neighborhood of that point leading to a so-called nonlocal effect, though, of course, the effective parameter L*(x) are the 

local ones in the sense of nonlocal elasticity theory.  The diameter of this region mentioned above is estimated as three 

times the characteristic dimension of the inclusions. As a result, a statistically inhomogeneous composite medium 

behaves like a macroscopically inhomogeneous medium with local effective modulus L*(x) determined for a nonlocal 

distribution of the inclusions in a certain neighborhood of the point considered. Let us consider a strip model of ideal 

fiber cluster with probability densities 1(x)=n and 2(x1|x2)=ng(|x1-x2|) inside the thick ply |x|<aw=16a (a=1 is the 

inclusion radius) and 0 otherwise. We will consider the volume fiber fraction inside the ply c=0.65, and two radial 

distribution functions g(r) (step and nonstop functions, see [1]). The neglect of the binary interaction of inclusions for 

statistically homogeneous medium n(x)=const. reduces the formula for the effective elastic moduli to the analogous 

relation obtained by the Mori-Tanaka method which is invariant to the  g(r). Assume the matrix is epoxy resin which 



contains identical circular glass fibers. As can be seen from Fig. 1  the use of the approach based on the quasicrystalline

approximation (also called Mori-Tanaka (MT) approach) leads to an underestimate of the effective moduli L*
2222

compared to the more exact approximation of the MEFM which provides a good comparison with experimental data for

statistically homogeneous media (see [2]). The stress concentrator factors found at the previous local evaluations permits

one to estimate the stresses in the inclusions < >i(x2)   (see Fig. 2). For the SH media, we will consider inhomogeneous

  

  

  

  

  

loading < ij> (x)= i2 j2f(x2)  with the . The

function f(x
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2) is not twice differentiable that makes the use of the Fourier transform

method questionable. However, exploring of the iteration method for the solution

of Eq. (1) presents no difficulties and provides fast convergence of the obtained

iterations (see Fig. 3. and [3], [4]). It is noted that the estimation of the effective

elastic moduli is a linear problem with respect to the local stress distribution

analyzed which is less sensitive than nonlinear micromechanical problems of

elastoplastic deformation, fracture, and fatigue of composite materials. However,

the method also allows one to estimate the second moment of stresses in the

constituents as well as at each point on the interface between the matrix and fibers.

The dispersion of these interface stresses, defined only by stress fluctuations, will

is used for the prediction of the effective envelope for failure initiation. The 

dependence of effective failure envelope on the elastic, geometrical, and failure

parameters of the constituents and the interphase matrix/fibers are analyzed (see

for details [5]). The nonelliptical shape of the effective failure envelopes (EFE) 

using the proposed method of integral equations is demonstrated in Fig. 4

(X=< 11>, Y=< 12>).
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Fig. 4. EFE estimated for the real

failure parameters for nonstep and

step g(r) (solid and dot-dashed

curves) as well as for the assumed 

neglecting of shearing failure

(dotted and dashed curves).

Fig. 3. < 22>i(x2) vs x2 estimated for 

nonstep g(r) by the MEFM. Zero order

(solid line), first order (dotted line),

second order (dot-dashed line), sevens 

order (dashed line) approximations.

Fig. 1. L*
2222 vs x2 estimated by:

MEFM and nonstep g(r) (dashed line),

MEFM and step g(r)  (dot-dashed

line),   MT and nonstep g(r) (dotted 

line), MT and step g(r) (dotted line).

Fig. 2. < 22>i(x2)  (solid line)  and

< 12>i(x2)   (dot-dashed line) for the

external loading at the infinity

ij= i2 j2 and ij = i1 j2,

respectively, and  a  step function g.
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