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Summary This paper is concerned with the transient thermoelastic analysis of an orthotropic functionally graded 
rectangular plate due to nonuniform heat supply. The material constants of the orthotropic rectangular plate are assumed 
to vary exponentially in the thickness direction. We obtain the exact solution for the three-dimensional temperature 
change in a transient state, and three-dimensional thermal stresses of a simple supported rectangular plate. 
 

INTRODUCTION 
Functionally graded materials (FGM) have been developed as a new material that is adaptable for a 

super-high-temperature environment. It is well-known that thermal stress distributions in a transient state can show 
large values compared with the one in a steady state. Therefore, the transient thermoelastic problems become important. 
On the other hand, the exact treatments for thermoelastic problems of FGM have been done thus circumventing the 
laminate theory approximation. The reports concerned with the three-dimensional transient thermoelastic problems of 
FGM are few. Recently, Vel and Batra [1] treated a simply supported functionally graded rectangular plate, which 
material properties are represented by a Taylor series expansion. 

In the present paper, we analyzed exactly the three-dimensional transient problem of thermoelasticity involving an 
orthotropic functionally graded rectangular plate due to nonuniform heat supply. The material properties of the 
orthotropic rectangular plate are assumed to vary exponentially in the thickness direction. 

 
ANALYSIS 

   We consider an orthotropic functionally graded rectangular plate that has nonhomogeneous thermal and mechanical 
properties in the thickness direction. The thickness and the lengths of the sides of it are represented by , x  and 

y , respectively. We assume that the rectangular plate is initially at zero temperature and is suddenly heated from the 
lower and upper surfaces by surrounding media with relative heat transfer coefficients  and bh . We denote the 
temperatures of the surrounding media by the functions  and  and assume its end 
surfaces are held zero temperature. The transient heat conduction equation is taken in the following form: 
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The thermal conductivities is assumed to take the following forms: 
)()( 0 B/azexpz ii λλ = ,        (2) 

while the specific heat  and density  are constant. In Eq.(2),  is an arbitrary constant which is not zero. 
Substituting the Eq.(2) into the Eq.(1), the transient heat conduction equation in dimensionless form is 
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For the sake of brevity, we introduce that the temperature functions , ,  and  are 
distributed symmetrically in  and  axes. Introducing the finite cosine transformations with respect to the variable 
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x  and y  and Laplace transformation with respect to the variable , the solution of Eq.(3) can be obtained as 
follows:  
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In Eqs.(4) and (5), , and  are kq ms γ
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We now analyze the transient thermoelasticity of an orthotropic functionally graded rectangular plate with simply 
supported edges as a three-dimensional problem. The elastic stiffness constant  and the coefficient of linear thermal 
expansion  are assumed to take the following forms: 

ijC
iα

)()( 0 zlexpCzC ijij = , )()( 0 zbexpz ii αα =        (7) 
where  and  are arbitrary constants. Substituting the displacement-strain relations, the stress-strain relations and 
Eq.(7) into the equilibrium equations, the displacement equations of equilibrium are written as 
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If the lower and upper surfaces are traction free, the boundary conditions of lower and upper surfaces can be 
represented as follows: 
 10,z = ;  0=zzσ ,  0=yzσ ,  0=zxσ       (11) 
We now consider the case of a simply supported rectangular plate.  
 xLx ±= ;  0=xxσ ,  0=v ,  0=w        (12) 
 yLy ±= ;  0=yyσ ,  0=u ,  0=w        (13) 
We assume the solutions of Eqs.(8)- (10) in order to satisfy Eqs.(12) and (13) in the following form. 
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In expressions (14), the first term on the right side gives the homogeneous solution and the second term of right side 
gives the particular solution. In order to obtain the homogeneous solution, we assume that 

[ ] )()()(),()( 000 zexpW,V,UzWzV,zU ckmckmckmckmckmckm λ=      (15) 
The details of the homogeneous solution are omitted here for the sake of brevity. In order to obtain the particular 
solution, we use the series expansions of the Bessel functions. Since the order  of the Bessel function in Eq.(5) is not 
integer in general, Eq.(5) can be written as the following expression. 
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)(zU pkm , )(zV pkm  and )(zW pkm  of the particular solution are obtained as the function system like Eq.(16). 

In expressions (3)-(16), we have introduced the following dimensionless values: 
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NUMERICAL CALCULATION 

To illustrate the foregoing analysis, numerical parameters of heat conduction and shape are presented as follows: 
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where  is Heaviside’s function. We assume that the plate is heated partially from the lower surface by 
surrounding media. The effects of the nonhomogeneity and orthotropy of the material on the temperature change, the 
displacement and the stress distributions are investigated. 
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We conclude that we can evaluate all stresses of the orthotropic functionally graded rectangular plate in a transient 
state. 
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