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Summary The dominant and higher-order asymptotic stress and displacement fields surrounding a stationary crack in a ductile func-
tionally graded material subjected to anti-plane shear loading are derived. It is shown that the leading (most singular) term in the
asymptotic expansion is the same in the graded material as in the homogeneous one. The second term in series may differ from that of
the homogeneous case depending on the particular material property variation.

INTRODUCTION

Many naturally occurring engineering materials have properties that vary continuously and smoothly with position. Ex-
amples include animal bones, teeth and wood. Engineering materials with inhomogeneous material properties are used
in order to design efficient structures. For the purpose of this article, a functionally graded material is one, in which the
material properties such as Young’s modulus, density or yield stress are a function of spatial position and the functional
form of the variations are known. Functionally graded materials have a broad range of applications as in thermal barrier
coatings in gas turbines, artificial dental implants, bearing surfaces in MEMS devices and ballistic impact resistant struc-
tures. Functionally graded materials can be formed in a variety of ways, for example a thermal barrier coating is formed
by depositing a porous ceramic coating on a metallic substrate (bond coat). The material properties of such a a graded
system varies from that of a pure metal on one side to that of a ceramic on the other and hence will have the advantages
of both a metal and ceramic at the same time. Fracture behavior of graded materials is not fully understood which limits
their usage. Static (Eischen, 1987) and dynamic (Parameswaran and Shukla, 1999) analysis of cracks in inhomogeneous
materials do exist in the literature, but they all ignore the effect of inelastic deformations even when the material is ductile.
In this paper, we focus our attention on the asymptotic solution of a stationary crack in a ductile, inhomogeneous material
subjected to an anti-plane shear loading. The analysis is developed in the lines of the HRR solution (Hutchinson, 1968;
Rice and Rosengren, 1968) and the elastic deformations are assumed to be negligibly small compared to the plastic ones.
A variable separable solution is assumed to exist near the crack tip, even when the material properties vary with spatial
position. As in the elastic case (Eischen, 1987; Parameswaran and Shukla, 1999), we see that the first-term (the most
singular term) of the asymptotic solution remains unaffected by the material inhomogeneity even in the plastic case. In
this article we explore whether the second-term is affected by the material property variation.

FORMULATION

A semi-infinite stationary crack embedded in a functionally graded material subjected to a far field mode 3 loading is
considered. The analysis is performed in the polar coordinates choosing the crack tip as the origin. The material is
assumed to follow the infinitesimal

���
-deformation theory along-with the Ramberg-Osgood power law hardening model.

The shear stresses in the anti-plane case can be written as�	��
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with 
.�/���102� 34�506" %&'�7�8 ��! , where �90 and �50 are the stress and strain at initial yield respectively and 3 is a non-
dimensional parameter. For mathematical simplicity we restrict the hardening index : to be a constant, while allowing
the other material properties in the above equation to vary with position. Traction free boundary condition is enforced on
the crack faces in order to obtain a solution ( �<; 
 �=���6>�?��2��@ ).

LEADING ORDER TERM

The leading order solution is obtained by assuming a variable separable one-term expansion for the out of plane displace-
ment as A ����������CB DFE G ��CBIHKJ�L '&M �N��� as �IOP@	� (2)

where �CB is the radius of the plastic zone, E is a non-dimensional amplification factor and Q is the strain singularity, which
must be greater than RTS to ensure a bounded displacement field. The governing non-linear ordinary differential equation
for

M �=��� is obtained by using the strain-displacement, stress-strain and stress equilibrium equations, which can be written
as 
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here �ZY denotes the intrinsic material length scale associated with the material gradient. In the above equation U ' , U �)_
and U � ; are functions of the angular function

M
and its derivatives. When the material gradient is absent the above system

of equations reduce to U ' �c@ and the solution for the homogeneous material is recovered. The material property 
 is
required to be finite and strictly positive at the crack tip and hence the solution to the leading order term in the case of a
graded material is identical to that of a homogeneous material. This result is expected and follows the trend observed in
elastic analyses of graded materials (Eischen, 1987).

HIGHER ORDER TERM

As seen in the previous section, the material property gradient does not affect the solution to the leading order term. Here,
we explore the possibility whether the second (less singular) term is affected by the material gradient.

Homogeneous case
Now the displacement is assumed to be given by a two term expansion asA ����������ZB D�E G ��ZBVH J�L '&M �=��� Wed G ��ZBTH�f L '1g �=���(� (4)

where E and d are non-dimensional amplitude factors, Q and h are the exponents for the leading and second terms,
respectively (with hjikQ ). A set of governing non-linear ordinary differential equations are obtained for

M
and

g
as
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In the above equation U l is a function of both the angular functions
M

and
g

and their derivatives. The solution to the first
of the above equations is identical to the solution obtained earlier for the leading order term. With the knowledge of Q andM

a solution for h (eigen value) and
g

(eigen vector) can be obtained by solving U l �s@ . The amplitude factor d is left
undetermined by this asymptotic analysis. The exponent h obtained for the homogeneous material is denoted as h�t and
forms as the upper bound for the second term exponent of a graded material as shown in the next section.

Graded material
A two term expansion for the out of plane displacement described in the previous section is used even in the case of the
graded material. In the homogeneous case the material property 
 was independent of the spatial position. In the graded
material we assume the material property to be
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The above type of power-law material property variation is most generic and can describe any functional form of property
variation, such as linear, exponential etc., by setting x � S (Taylor series expansion). By choosing an appropriate trigono-
metric function for u �=��� the material property can be described along radial lines, on the crack line and perpendicular to
the crack plane. The boundary value problem for the higher order term for a graded material is now given byU ' ��@	�6U l W G ��CBTHTy w L<J^z % f x G 
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It can be seen from the above equation that the higher order term will or not be affected by the material property variation
depending on the value of � x W Q � RFh . When hbi�x W Q the first term which is the most singular term is the only
possible solution. When h+�sx W Q the asymptotic solution for a graded material is identical to that of a homogeneous
material upto and including the second term. The material property gradient is going to alter the asymptotic solution only
when h � x W Q . In this case the exponent of the second term is completely determined and the multiplying factor in
(7) � � x �N
 ' 
 0 �^�=�CB����ZY2� w � E � d � becomes the eigen value of the boundary value problem. It is interesting to note that
the amplification factor d which was left undetermined by the asymptotic analysis in the homogeneous case is now fully
determined. Our analysis has shown that a variable separable solution is not possible when h+�sh t , which specifies an
upper bound for the material exponent as x �K�5� � : �2� h t R�Q .

References

[1] Hutchinson J. W.: Singular behavior at the end of a tensile crack in a hardening material. Journal of the Mechanics of Solids 16:13–31, 1968.
[2] Rice J. R. and Rosengren G. F.: Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics

of Solids 16:1-12, 1968.
[3] Eischen J. W.: Fracture of non-homogeneous materials. International Journal of Fracture 34: 3-22, 1987.
[4] Parameswaran V. and Shukla A.: Crack-tip fields for dynamic fracture in functionally graded materials. Mechanics of materials 31: 579-596,

1999.


