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Summary A special version of Noether’s theorem for the sake of absolute invariance on invariant variational principles is applied to 
the Lagrangian density function for obtaining conservation laws of functionally graded materials. It is found that the mass density 
and Lamé’s coefficients have to satisfy a set of first-order linear partial differential equations. Under the consideration of varying the 
volume fraction of the constituent materials, the effective mass density and Lamé’s coefficients, satisfying those partial differential 
equations, are obtained. Four conservation laws in material space are presented. A path-independent integral, which is directly related 
to the dynamic energy release rate, in the moving coordinate reference attached at the tip of crack is given.  
 

CONSERVATION LAWS IN MATERIAL SPACE 
 
Conservation laws constitute a basic tool in the analysis of properties of solutions to any given system of partial 
differential equations and provide valuable information on the physical quantities pertaining to the problem under 
investigation, so that the conservation laws of functionally graded materials (FGMs) should be inquired.  
The Lagrangian density function  and the constitutive equations of FGM are L
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where  is the elastic potential; u ,  and  are the components of displacement, strain and stress, 
respectively; ,  and  stand for the mass density and Lamé’s coefficients, which are functions of space  for 
FGMs. By applying Lie’s infinitesimal criterion on the invariance to the Lagrangian (Olver, [1]), it follows that  
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where ,  and  are arbitrary constants. Values of the constants b , , ,  and  depend on 
satisfaction of the following equations 
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Fig.1. Propagation of a crack in functionally graded material. 

 
FGMs are composite, microscopically non-homogenous materials, in which the material coefficients vary smoothly and 
continuously from one surface to the other as shown in Fig.1. This is achieved by gradually varying the volume fraction 
of the constituent materials. In such a way, the effective shear modulus  may be expressed as  µ
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where  and  are the shear moduli on the left-hand and right-hand surfaces, respectively; V  and 

 denote the volume fractions and related by 
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Similarly, the effective mass density  can be expressed in terms of volume fractions as shown above. As discussed 
in many other papers, Poisson’s ratio  depends weakly on position, so that it is assumed to be a constant. Under the 
consideration of (4) and (5), the effective shear modulus and mass density are obtained by solving equations in (3) as 
follows 
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and  is an arbitrary constant. Here, owing to  and V  being functions of  only, constants Ω  and  
within  have been set equal to zero. The normalized values  and  are given in Fig.2, in which 

( ) and ( ) for aluminum Al 6061-TO, and ( ) and 
( kg ) for ceramic TiC. They are numerically well and would not be unrealistic for various FGMs under 

the consideration of varying the volume fraction. 
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Fig.2. Effective shear modulus and mass density; : , ; 1−=N 2938.0−=M : , 4308.3=N
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Noether’s theorem [1,2] asserts the existence of conservation laws, namely 
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1+=  is the Hamiltonian density, Σ the pseudomomentum, Q  the linear 
momentum and 
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2 a dynamic version of Eshelby’s energy-momentum tensor. Substituting 
expressions (2) into equation (8), considering the independence of  and Ω , and neglecting independent constants 

,  and  for conservation laws in physical space, we obtain the following conservation laws in material space  
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It should be emphasized that these conservation laws under the consideration of absolute invariance of the Lagrangian 
are non-trivial. 
 

THE PART-INDEPENDENT INTEGRAL 
 
By using the effective shear modulus and mass density given in (6), it can be reaffirmed that the dominant terms in the 
crack tip stress field are identical to those of a homogeneous material having the material properties of the FGM crack 
tip vicinity. It is also known that near the tip of an extending crack, field quantities obey the “transport assumption”, that 
is, . Therefore, as shown in Fig.1, the path-independent integral emanating from the conservation 
law (9) in the moving coordinate reference  attached at the tip of crack can be calculated as  
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where  is the dynamic energy release rate (Freund, [3]). G
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