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Summary A special version of Noether’s theorem for the sake of absolute invariance on invariant variational principles is applied to
the Lagrangian density function for obtaining conservation laws of functionally graded materials. It is found that the mass density
and Lamé’s coefficients have to satisfy a set of first-order linear partial differential equations. Under the consideration of varying the
volume fraction of the constituent materials, the effective mass density and Lamé’s coefficients, satisfying those partial differential
equations, are obtained. Four conservation laws in material space are presented. A path-independent integral, which is directly related
to the dynamic energy release rate, in the moving coordinate reference attached at the tip of crack is given.

CONSERVATION LAWS IN MATERIAL SPACE

Conservation laws constitute a basic tool in the analysis of properties of solutions to any given system of partial
differential equations and provide valuable information on the physical quantities pertaining to the problem under
investigation, so that the conservation laws of functionally graded materials (FGMs) should be inquired.
The Lagrangian density function L and the constitutive equations of FGM are
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where W is the elastic potential; u;, &; and o, are the components of displacement, strain and stress,
respectively; p, A and u stand for the mass density and Lamé’s coefficients, which are functions of space x; for
FGMs. By applying Lie’s infinitesimal criterion on the invariance to the Lagrangian (Olver, [1]), it follows that

t=bt+f, §;=Bx;+epQix +Cp, Uy =Au; +e5,Quy +epox; +y; )

where S, ®; and y; are arbitrary constants. Values of the constants b, B, Q;, G and A depend on
satisfaction of the following equations
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Fig.1. Propagation of a crack in functionally graded material.

FGMs are composite, microscopically non-homogenous materials, in which the material coefficients vary smoothly and
continuously from one surface to the other as shown in Fig.1. This is achieved by gradually varying the volume fraction
of the constituent materials. In such a way, the effective shear modulus x may be expressed as
u=pVy(x)+ upVe(x) “)

where p; and up are the shear moduli on the left-hand and right-hand surfaces, respectively; V;(x;) and
Vg (x;) denote the volume fractions and related by

Vi) +Ve(x)=1 (5)
Similarly, the effective mass density p can be expressed in terms of volume fractions as shown above. As discussed
in many other papers, Poisson’s ratio v depends weakly on position, so that it is assumed to be a constant. Under the
consideration of (4) and (5), the effective shear modulus and mass density are obtained by solving equations in (3) as
follows
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and N is an arbitrary constant. Here, owing to V; and ¥V, being functions of x; only, constants Q, and Q,
within &, have been set equal to zero. The normalized values u/u; and p/p; are given in Fig.2, in which
H; =2594 ( GPa ) and p; =2700 ( kg/m3 ) for aluminum Al 6061-TO, and wy =200.00 ( GPa ) and
pr =4920(kg/ m? ) for ceramic TiC. They are numerically well and would not be unrealistic for various FGMs under
the consideration of varying the volume fraction.
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Fig.2. Effective shear modulus and mass density; O: N=-1, M =-0.2938; @: N =3.4308,
M=1; ®: N=1, M=02938; @: N=0.3, M =0.0881.

Noether’s theorem [1,2] asserts the existence of conservation laws, namely

D,(tH -G Z; —UOp) +Di (-0 + Sy +Uoy) =0 (®)
where H = W+% pup; is the Hamiltonian density, X, =—pu,u,, the pseudomomentum, O, = pu, the linear
momentum and Sy, = (W — % pu i )6y — o u; . a dynamic version of Eshelby’s energy-momentum tensor. Substituting
expressions (2) into equation (8), considering the independence of C; and €2,, and neglecting independent constants

B, o; and y; for conservation laws in physical space, we obtain the following conservation laws in material space
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It should be emphasized that these conservation laws under the consideration of absolute invariance of the Lagrangian
are non-trivial.

THE PART-INDEPENDENT INTEGRAL

By using the effective shear modulus and mass density given in (6), it can be reaffirmed that the dominant terms in the
crack tip stress field are identical to those of a homogeneous material having the material properties of the FGM crack
tip vicinity. It is also known that near the tip of an extending crack, field quantities obey the “transport assumption”, that
is, a( )/ot=—Io( )/ 0Ox, . Therefore, as shown in Fig.1, the path-independent integral emanating from the conservation
law (9) in the moving coordinate reference (y,,y,) attached at the tip of crack can be calculated as

J = lim .[[(P] £ IP Y, + Py, MU = {1+ RI—[1 -1 = PR P, pyinn s (14)
=04 2 In(up / pp)
where G is the dynamic energy release rate (Freund, [3]).
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