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Summary A state space formalism for electromechanical analysis of functionally graded materials (FGM) with rectilinear 
anisotropy and cylindrical anisotropy is presented. On the basis of the formalism, the piezothermoelastic solution to a 
problem may be determined analogously through its elastic counterpart. Viable schemes for solving the non-uniform 
state equation are proposed. Problems of electromechanical analysis of FGM can be treated in an elegant way.  

 
STATE SPACE FORMULATION 

The conventional approach to anisotropic elasticity is the Lekhnitskii or Stroh formalism. For piezothermoelasticity the 
usual approach is to extend the Stroh formalism to include the piezoelectric effects. Extension of the Stroh formalism to 
piezothermoelasticity of FGM is unwieldy in formulation and restrictive in application. Herein we present a general 
formalism and solution approach for electromechanical analysis of FGM. The piezoelectric materials considered possess 
rectilinear anisotropy or cylindrical anisotropy of the most general kind. The novelty of the formalism lies in that the 3D 
equations of piezothermoelasticity are represented in full by a state equation and an output equation in which only a 
displacement vector, a stress vector, and six sub-matrices that characterize the material properties appear. This is 
achieved through grouping the field variables and selecting the state vector judiciously. In addition, the equations of 
piezothermoelasticity in the state space bear a remarkable resemblance to their elastic counterparts. As such, the 
piezothermoelastic solution to a problem may be obtained in an analogous manner through the corresponding elastic 
solution. The formalism brings in matrix algebra in the solution. When dealing with FGM, the material inhomogeneity 
renders the system non-uniform; it is very difficult to obtain an analytic solution to the state equation in general. Viable 
schemes for solving the non-uniform state equation are suggested. The schemes are useful for problems both in Cartesian 
coordinates and in cylindrical coordinates.    

FGM with Rectilinear Anisotropy  
The fundamental equations of piezothermoelasticity are given in [1]. To avoid dealing with individual field variables and 
many of the material constants, we make judicious grouping of the field variables and partitioning of the constitutive 
matrices. On the basis of the derivation in [2-4] for homogeneous anisotropic elastic and piezoelectric materials, the 
basic 3D equations in Cartesian coordinates can be reformulated into a state equation and an output equation as follows: 

 





∂
∂+









+








=





∂
∂

Ku
0

F
0

b
bu

DD
DDu

T 2t
-

x

2

2

1

21121

1211

22
Tττ             (1) 

  [ ] T3
2

212 buLL −



= ττ                                  (2) 

The notations similar to those in [2-4] are used. 2x  is considered to be a distinct axis; the state vector consists of 
[ ]Tu φuuu 321= and [ ] ,T

2D1212122 σσσ=τ the vector 1τ contains the remaining stress components and electrical 
displacements; ijD are linear differential operators of 31 , xx and the material constants. For FGM the system matrix in (1) 
is spatial dependent and the state equation is non-uniform with variable coefficients. 

FGM with Cylindrical Anisotropy 
The state equation and output equation in cylindrical coordinates take the form 
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where r is considered to be a distinct axis; [ ] ,u Tφuuu zr θ= [ ] ,T
rzrrr rDσσσ θ=τ sτ contains the remaining 

components of the field variables; ijL are linear differential operators of z,θ and the material constants.  
Equations (1) to (4) bear a remarkable resemblance not only in themselves but also to their elastic counterparts [2, 3]. As 
a result, the piezothermoelastic solution of a problem may be determined from the corresponding elastic solution by 
analogy and correspondence. A proper replacement of the corresponding matrices in the elastic solution produces the 
piezothermoelastic solution. When the formalism is applied to plane problems of homogeneous materials, the solution of 
the homogeneous equations leads naturally to the eigenrelation and the octet equation based on the Stroh formalism [4].  



Equations (1) and (3) are not easy to solve in general except for special classes of FGM, such as a power-law distribution 
of the inhomogeneity. A formal solution may be obtained by using successive integration. Yet it is difficult to carry out 
the integration and assess the convergence. Herein we propose two solution schemes.  

Piecewise-Constant Approximation 
The basic idea is to approximate the inhomogeneity of the FGM by piecewise-constant functions so that the state 
equation in the sub-regions becomes uniform and solvable analytically. Continuity conditions at the jumps introduced by 
the piecewise-constant approximation are satisfied by means of the transfer matrix. In the case of a FGM plate (or a 
radially inhomogeneous FGM cylinder), the scheme amounts to approximating the FGM body by a system composed of 
homogeneous layers (or coaxial homogeneous cylinders). It applies to a laminated system in an obvious way. The 
scheme has been applied to problems of circular cylinders and tubes of FGM and laminated composites [5].  

Power Series Approximation 
The scheme is well suited when the inhomogeneity of the FGM is describable by polynomials. For illustration, let us 
consider FGM with radial inhomogeneity. Suppose, upon expressing the dependence of θand z in some way (such as 
Fourier series representation), that (3) reduces to 
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The dependence of the material property on r renders the system matrix A(r) a polynomial given by 
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where iA are known constant matrices. 
The homogeneous solution of (5) can be determined by assuming a power series representation of X(r):   
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where nX are unknown vectors. A substitution of (7) in (5) leads to the following recursive relation 
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The relation allows one to express the higher-order terms of nX in terms of the lower-order terms, and X(r) in turn can 
be expressed in terms of 0X as  
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Now M(r) plays the role of the transfer matrix. With the homogeneous solution so determined, the particular solution of 
(5) can be easily found using a standard method of matrix algebra. The unknown in 0X can be determined from the 
boundary conditions on the cylindrical surfaces r = constant for a specific problem.   

SOME REMARKS 

The state space formalism is elegant in formulation and systematic in operation. It has been used for treating the 
generalized plane strain and generalized torsion of an elastic body [6] and a piezoelectric body [7], where focuses were 
on formulations and solutions of specific problems. A number of exact solutions have been obtained with relative ease 
using the approach. For more general problems Hamiltonian characteristics of the system may be used to advantage. For 
piezothermoelasticity of FGM the material inhomogeneity, in addition to electromechanical coupling and material 
anisotropy, leads to a challenging mathematical problem. The state space formalism makes treatment of the problem less 
formidable. It appears that the electromechanical analysis of FGM is best viewed and treated in the state space setting.   
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