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Summary Parametric vibrations of functionally graded plates subjected to in-plane time-dependent forces destabilizing the equilibrium 
state are analyzed. Nonlinear moderately large deflection equations taking into account a coupling of in-plane and transverse motions are 
used. Material properties are graded in the thickness direction of the plate according to volume fraction power law distribution. The 
asymptotic stability criteria are derived using Liapunov's direct method. 
 

PROBLEM FORMULATION 
 
Functionally graded materials have gained considerable attention in the high temperature applications. Functionally 
graded materials are composite materials, which are microscopically inhomogeneous, and the mechanical properties  
vary smoothly or continuously from one surface to the other. It is this continuous change that results in gradient 
properties in functionally graded materials (FGM). Many studies have examined FGM as thermal barriers. With the 
increased usage of these materials it is also important to understand the dynamics of FGM structures. A few studies 
have addressed this. Transient thermal stresses in a plate made of functionally gradient material were examined by 
Obata and Noda (1993).Vibration analysis of functionally graded cylindrical shells was performed by Loy, Lam and 
Reddy (1999). Recently, Lam, Liew, and Reddy (2001) presented dynamic stability analysis of functionally graded 
cylindrical shells under periodic axial loading. Consider the thin functionally graded rectangular plate with in-plane 
dimensions a and b, and thickness h. In-plane and transverse displacements are denoted by u, v, and w, respectively. 
Moderately large deflection equations taking into account a coupling of in-plane and transverse motions are used. Due 
to a small thickness rotary inertia terms are neglected. An oscillating temperature causes generation of in-plane time-
dependent forces destabilizing plane state of the plate equilibrium. Material properties are graded in the thickness 
direction of the plate according to volume friction power law distribution. The viscous model of external damping 
with a constant coefficient ß is assumed. Taking into account the Kirchhoff hypothesis on non-deformable normal 
element and the Karman-type geometric nonlinearity the plate dynamics is described by partial differential equations 
system in the domain ( ) ( )b,a,O 00 ×? . The membrane forces are stochastic with means equal to zero and known 
probability distributions. The processes are physically realizable and sufficiently smooth in order the solution of 
dynamics equations exists. We use the extensional, coupling and bending stiffnesses Aij , Bij , and Dij , (i,j)=1,2,6) in 
the form 
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where Qij are the reduced stiffnesses for plane isotropic materials. Relationships between in-plane forces (Nx, Ny, 
Nxy) and moments (Mx, My, Mxy) and the middle plane strains (u ,x+1/2 w,x

2,  v ,y+1/2 w,y
2, u ,y+v,x+ w,x w,y) and 

curvatures (w,xx, w,yy, 2w,xy)  are described by the known constitutive equations. The effective elastic modulus, 
effective Poisson's ratio, and mass density ? of the functionally graded plate are denoted by Eef , ?ef , and ?ef, 
respectively. In order to model the material properties of functionally graded materials, the properties must be both 
temperature and position dependent. This is  achieved by using a rule of mixtures for the mechanical parameters E, ?, 
?. The volume fraction is a spatial function and the properties of the constituents are functions of the temperature. The 
combination of these functions gives the effective material properties of functionally graded materials Fef in terms of 
the appropriate properties of the ceramic and the metal, respectively, and  V is the volume fraction of the ceramic 
constituent of the functionally graded material. A simple power law exponent of the volume fractions is used to 
describe the amount of ceramic and metal in the functionally graded material 
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where q is the power law exponent. The plate is assumed to be simply supported along each edge. The conditions 
imposed on displacements and internal forces and moments, called according to Almroth's (1966) classifications S2. 
The transverse motion of the plate is described by the nonlinear uniform equations with the trivial solution   w = w, t = 
0  corresponding to the plane  (undisturbed) state. In the paper a stochastic extension of Liapunov stability called the 
almost sure asymptotically stability of the trivial solution is analyzed. The crucial point of the method is a 



construction of a suitable Liapunov functional,  which is positive for any motion of the analyzed system. The measure 
of distance between disturbed solutions and equilibrium state is  chosen as the square root of Liapunov functional.  
 

STABILITY ANALYSIS 
 
The energy-like Liapunov functional has the form of a sum of modified kinetic energy and potential energy  
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It may be observed that contrary to the linear or linearized case is the fourth order functional. It is assumed that the in-
plane forces are periodic or stochastic non-white stationary and sufficiently smooth ergodic process. Therefore, it is 
legitimate to use the classical differentation rule. Upon differentiation with respect to time, substituting dynamic 
equations and using the boundary conditions we obtain the time derivative of Liapunov functional 
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where the auxiliary functional U is given. Therefore, the stability analysis of the nonlinear system depends on the 
construction of the bound nn V?U = . The associate Euler equations are nonlinear in the case of the fourth-order 
functionals. It complicates a stability analysis and in order to obtain the analytical form of function we have to modify 
the variational problem. Therefore, our object is to find such second order functionals V* and U* that the 
inequality *V?*U = will imply the inequality for the nonlinear problem. In order to do this we express functional in 
the form where V is the second order Liapunov functional for a linearized problem. Omitting in considerations the 
fourth order terms we obtain the lower estimation of nV and the upper estimation of nU . Solving the associated Euler 
equations for the modified linearized problem we find the function ?. If the in-plane processes are ergodic with the 
known probability distribution, the sufficient condition  of the almost sure asymptotic stability is written as follows 

λβ E≤ , where E denotes the mathematical expectation. The stability region of the plate made of steel and zirconia 

for a zero-mean Gaussian force acting in x direction with the variance 2σ is shown in Fig. 1. 
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Fig. 1 Stability domains of quadratic plate unidirectionally loaded by in-plane time-dependent Gaussian force for the 
different power law exponents 

 
CONCLUSIONS 

 
The applicability of the direct Liapunov method has been extended to geometrically nonlinear functionally graded 
plates subjected to time-dependent, in-plane forces. The major conclusion is that the linearized problem should be 
modified to ensure the stability of nonlinear problem. The critical value of stability domains for intermediate values 
of power law exponent is substantially decreased.   
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