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Summary Parametric vibrations of functionally graded plates subjected to in-plane time-dependent forces destabilizing the equilibrium
state are analyzed. Nonlinear moderately large deflection equations taking into account a coupling of in-plane and transverse motions are
used. Material properties are graded in the thickness direction of the plate according to volume fraction power law distribution. The
asymptotic stability criteria are derived using Ligpunov's direct method.

PROBLEM FORMULATION

Functionally graded materials have gained considerable attention in the high temperature applications. Functionally
graded materials are composite materials, which are microscopically inhomogeneous, and the mechanical properties
vary smoothly or continuously from one surface to the other. It is this continuous change that results in gradient
properties in functionally graded materials (FGM). Many studies have examined FGM as thermal barriers. With the
increased usage of these materials it is aso important to understand the dynamics of FGM structures. A few studies
have addressed this. Transient thermal stresses in a plate made of functionally gradient material were examined by
Obata and Noda (1993).Vibration analysis of functionally graded cylindrical shells was performed by Loy, Lam and
Reddy (1999). Recently, Lam, Liew, and Reddy (2001) presented dynamic stability analysis of functionally graded
cylindrical shells under periodic axial loading. Consider the thin functionally graded rectangular plate with in-plane
dimensions a and b, and thickness h. In-plane and transverse displacements are denoted by u, v, and w, respectively.
Moderately large deflection equations taking into account a coupling of in-plane and transverse motions are used. Due
to asmall thickness rotary inertia terms are neglected. An oscillating temperature causes generation of in-plane time-
dependent forces destabilizing plane state of the plate equilibrium. Material properties are graded in the thickness
direction of the plate according to volume friction power law distribution. The viscous model of externa damping
with a constant coefficient 3 is assumed. Taking into account the Kirchhoff hypothesis on non-deformable normal
element and the Karman-type geometric nonlinearity the plate dynamics is described by partial differential equations
system in the domain O ? (0,a)x(0,b). The membrane forces are stochastic with means equal to zero and known
probability distributions. The processes are physicaly realizable and sufficiently smooth in order the solution of
dynamics equations exists. We use the extensional, coupling and bending stiffnesses A;; , B;; , and Dy, (i,j)=1,2,6) in
theform

(Aij ’Bij 'Dij ): hl?z Q” (Z)(l,Z,ZZ)dZ
h/2

where Q; are the reduced stiffnesses for plane isotropic materials. Relationships between in-plane forces (N, Ny,
Nyy) and moments (My, My, Myy) and the middle plane strains (U x+1/2 W,,°, V ,+1/2 W,,°, U y*+V+ W,x W,y) and
curvatures (W,xx, W.,yy, 2W,xy) are described by the known constitutive equations. The effective elastic modulus,
effective Poisson's ratio, and mass density ? of the functionally graded plate are denoted by Ex , %, and 2,
respectively. In order to model the material properties of functionally graded materias, the properties must be both
temperature and position dependent. Thisis achieved by using a rule of mixtures for the mechanical parameters E, ?,
?. Thevolume fraction isa spatia function and the properties of the constituents are functions of the temperature. The
combination of these functions gives the effective material properties of functionally graded materials Fe in terms of
the appropriate properties of the ceramic and the metal, respectively, and V is the volume fraction of the ceramic
congtituent of the functionally graded material. A simple power law exponent of the volume fractions is used to
describe the amount of ceramic and metd in the functionally graded material

V(z)=((2z+h)/ 2n)a

where q is the power law exponent. The plate is assumed to be simply supported along each edge. The conditions
imposed on displacements and interna forces and moments, called according to Almroth's (1966) classifications S2.
The transverse motion of the plate is described by the nonlinear uniform equations with the trivial solution w=w, =
0 corresponding to the plane (undisturbed) state. In the paper a stochastic extension of Liapunov stability called the
amost sure asymptotically stability of the trivial solution is analyzed. The crucia point of the method is a



construction of a suitable Liapunov functional, which is positive for any motion of the analyzed system. The measure
of distance between disturbed solutions and equilibrium state is chosen as the square root of Liapunov functional.

STABILITY ANALYSS

The energy-like Liapunov functional has the form of a sum of modified kinetic energy and potential energy
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It may be observed that contrary to the linear or linearized caseis the fourth order functional. It is assumed that the in-
plane forces are periodic or stochastic non-white stationary and sufficiently smooth ergodic process. Therefore, it is
legitimate to use the classical differentation rule. Upon differentiation with respect to time, substituting dynamic
equations and using the boundary conditions we abtain the time derivative of Liapunov functional

dv,,
dt

= 2RV, +2U,

where the auxiliary functional U is given. Therefore, the stability analysis of the nonlinear system depends on the
construction of the bound U, = ?V,. The associate Euler equations are nonlinear in the case of the fourth-order
functional s. It complicates a stability analysis and in order to obtain the analytical form of function we have to modify
the variational problem. Therefore, our object is to find such second order functionals V* and U* that the
inequalityU* = 2/ * will imply the inequality for the nonlinear problem. In order to do this we express functiona in
the form where V is the second order Liapunov functional for a linearized problem. Omitting in considerations the
fourth order terms we obtain the lower estimation of V, and the upper estimation of U ,,. Solving the associated Euler
equations for the modified linearized problem we find the function 2. If the in-plane processes are ergodic with the
known probability distribution, the sufficient condition of the almost sure asymptotic stability is written as follows
b £ El , where E denotes the mathematical expectation. The stability region of the plate made of steel and zirconia

for a zero-mean Gaussian force acting in x direction with the variance s 2isshown in Fig. 1.
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Fig. 1 Stability domains of quadratic plate unidirectionally loaded by in-plane time-dependent Gaussian force for the
different power law exponents
CONCLUSIONS

The applicability of the direct Liapunov method has been extended to geometrically nonlinear functionally graded
plates subjected to time-dependent, in-plane forces. The major conclusion is that the linearized problem should be
modified to ensure the stability of nonlinear problem. The critical value of stability domains for intermediate values
of power law exponent is substantially decreased.
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