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Summary The study comprises the use of the arc length method to trace convolute load-deflection paths, typical of buckling problems, in 
association with dynamic relaxation technique, an explicit iterative method for the static solution of structural mechanics analyses. The 
work presents some new advances on the combination of these two techniques that are suitable to handle highly nonlinear limit point and 
snap-through problems. 
 

DYNAMIC RELAXATION 
 
The technique consists of finding the static solution from the transient response of a system excited through a suddenly 
loading. The dynamic equilibrium equations corresponding to n degrees of freedom of the system are solved for a damping 
coefficient close to the critical one. After some initial oscillations both velocities and accelerations tend to zero while the 
vector of displacements approaches to the deformed equilibrium configuration. It is based on the time domain integration of 
recursive eqs (1) and (2) related to the kth time increment to determine the discrete displacement vector q: 
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where M is a mass diagonal matrix (nxn), r  the residual vector, c the damping coefficient and the dot (•) means derivative in 
relation to the time t. The residual force vector is the difference between the internal force vector (F) and the external load 
vector (P). When the velocity vector q&  approaches to zero the static equilibrium is then assumed. The optimum c, M and ∆t 
parameters may be obtained as proposed by Underwood [1]. A damping coefficient close to the critical one can speed up the 
convergence that is obtained when rk≈ 0. 
 

ARC-LENGTH METHOD 
 
The arc-length method was first introduced by Riks [2] and used by Wempner [3] in order to improve the incremental 
computations near to limit points. Ramesh and Krishnamoorthy [4] applied the method for the first time in association with 
the dynamic relaxation to trace load-displacement paths for buckling analyses. A constrain condition based on the norm of 
the total displacements vector was employed. The method presented good results for truss and beam elements, but was not 
able to trace the post-buckling behavior of shells, in view of an oscillating response at the unstable equilibrium path. The arc-
length method is used to calculate de load increment (δp) that becomes an unknown in the unstable region of the equilibrium 
path. A constrain condition is added to the n equilibrium equations to obtain the solution of n+1 unknowns, the n degrees of 
freedom and an incremental load intensity factor δΛ. The circular constrain condition proposed by Crisfield [5] was 
considered suitable to be employed in the dynamic relaxation technique, 
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where S means the arc-length and the subscript m the load increment. From eqs. (1) and (2), the components of the 
incremental vector δq may be represented by the following equations: 
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When the theoretical model assumes one single parameter p to represent the applied external force, eq. (6) may be used to 
represent the external load as a function of a constant reference value (pref): 
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If following forces (non-conservative loading) must be considered, the load vector P is given by  
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where g is a vector in which the components are displacement functions, therefore 
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Using eqs (3), (7), (8) and (5a), the constrain condition (4b) may be transformed into the following second degree equation: 
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and the components of the vectors a and b are, respectively, 
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If the discriminant (∆) of eq. (9) is positive, two real roots will be generated. The correct root must generate the minimum 
angle (maximum cosine) with the old solution δqm-1, to prevent the solution from ‘doubling back on its tracks’ [6]. Therefore, 
these roots must be used to obtain from eq. (5a) the new incremental displacement vectors 1k

mq +1δ  and 1k
mq +2δ . The cosine of 

the angles θ1 e θ2, between the ‘new’ and the ‘old’ increments are given by:  
 

2

1

1 S
cos 1-m

1k
m qq δδθ ⋅

=
+

   and   
2

2

2 S
cos 1-m

1k
m qq δδθ ⋅

=
+

 .           (12a,b) 

 
Unfortunately, near to limit points, the discriminant assumes positive values close to zero and complex roots may occur. To 
overcome this problem a shift (d) of the constraint condition may be done in the following way 
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The correct value of d must generate ∆ ≥ 0 or 
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The solution of eq. (14) generates two roots d1 e d2 , given by eq. (15). The correct value of d must lie between d1 and d2, 
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CONCLUSION 

 
The method herein described has been successfully applied to simulate the quasi-static propagation of collapse in submarine 
pipelines [7]. It was used in combination with the finite difference discretization of the solid structure but applications with 
the finite element method are also possible [4]. It can be easily adapted to others explicit vector iteration methods and is 
especially attractive for problems with highly nonlinear geometric and material behavior. 
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