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Summary We present an adaptive spacetime discontinuous GalerkisY#nethod for linearized elastodynamics. The SDG method
uses a simple Bubnov-Galerkin projection that deliverBlstand oscillation—free solutions, with (V') complexity and exact momen-
tum balance on every spacetime element. An extended ves$ithe Tent Pitcher algorithm generates unstructured sipaearids
that support simultaneous grading in space and time. Weptressults in 1D and 21 time, emphasizing problems with shocks.

INTRODUCTION

Effective numerical methods for elastodynamics are needditerse engineering applications, ranging from seisemic
ploration to automotive design for crashworthiness. Aacyirequires highly refined spatial and temporal discrétina
when shocks are present, so the computational expense carabeeptably large. We present an adaptive procedure for
elastodynamic analysis based on a spacetime discontiGaleskin (SDG) finite element method [1] that delivers low-
dissipation and oscillation-free solutions. The disamntius SDG basis functions facilitate our adaptive impletatgom,
since nonconforming grids and jumps in polynomial orderar®mmatically supported. We use unstructured spacetime
meshes and a direct patch—by—patch solution proceduré@fitt) complexity. Extreme refinement is only required along
the spacetime trajectory of shocks, and we are not forcempase global constraints on the time step size. The patch—
by—patch solution technique supports local adaptive djpgi The following sections outline the SDG formulation,
describe the adaptive spacetime meshing procedures, aserppisome numerical results.

SPACETIME DISCONTINUOUS GALERKIN FORMULATION FOR ELASTODYNAMICS

Consider an open spacetime analysis domain; E¢ x R, whered is the spatial dimension. Lét denote the space
of admissible SDG displacement fields éhwhich are piecewisd?!, but which may suffer discontinuities across a
collection ofd—dimensional jump manifolds. The SDG formulation derivesfthe following Bubnov-Galerkin weighted
residual statement. Find a spacetime displacement solat® ) such that

/QW-E(dM—i-pb)—/aQ{w-i(dM—i—pb)—i—v'v-(M*—M)—i—(s*—s)/\iM}—i—/ wo - k(uy —ug)iR=0

Q-
1)
for all w € V, and for all open subdomairgg C D such thatu|,, € H*'(Q) but whereu may jump acros9Q. The
variables in (1) are differential forms with vector coeffints:M is the spacetime momentum fluxgaform comprised of
the stress and momentum density; the body féreea (d+ 1)—form (p is mass density); the strain-velocitys al—form;
and( is the standard basis fd+ 1)—forms. The notation§ andi denote the Lie derivative and insertion operators, both
defined with respect to the time direction. A superscripindicates a Godunov boundary value from a local Riemann
problem, andM is the momentum flux associated with the weighting functiorA subscript 0 indicates a mapping into
the zero—energy subspace of steady, infinitesimal—rigidldcement fields. Equation (1) enforces momentum baldace v
the equation of motiondM + pb = 0, and the momentum flux jump conditioV[* — M = 0 on 9Q. Kinematic
compatibility is weakly enforced via the jump conditiorss, — e = 0 on 9Q andug — up = 0 on the time—inflow
boundaryp@—. Integration by parts using the Cartan identity yields tB&Sveak form oy,

/(dv’v/\M—v'v-pb)—/ {W-M*+(E*—s)AiM}+/ wo - k(uy —ug)i=0Vw eV @)

Q oQ 0Q~

The SDG finite element method is obtained from (2) by assog&® with each element in a spacetime meshingof
and by equipping each element with an independent set afetésbasis functions. The SDG method has low dissipation
and it delivers exact momentum balance on every elementrimstef the physically meaningful Godunov fluxis*. It
requires no stabilization and generates oscillation-dodetions, even when shocks are present.

CAUSALITY AND THE ADAPTIVE TENT-PITCHER ALGORITHM

A mesh is called patch—wise causal if the elements can bggtbinto patches such that the wave characteristics at every
point on every patch boundary are either all inward or allvautl. The causal property establishes a partial ordering of
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Figure 1. An input space mesh and the resulting spacetime mesh cothpytgent Pitcher [2]
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Figure 2. SDG displacement solutions for shock propagation in artielesd without adaptivity (left) and with adaptive refinente
and coarsening (center and right). The space domain is &henlgorizontal axis, and time is increasing upwards.

patches where the solution on a given patch is independéméablutions on all subsequent patches; this enablespatch
by—patch solution procedures with (N) complexity. Tent Pitcher [2] is an advancing—front meshimgcedure that
generates patchwise—causal spacetime meshes over aargrdyiatial triangulation, as shown in Fig. 1. We immedyate
compute the SDG solution on each new patch generated by eheP Then, based on an appropriate error indicator,
we decide whether to accept the patch (with or without a regfee coarsening on subsequent patches) or to discard
the patch and demand a lodatrefinement operation. In the latter case, or when coargéasirequested, an adaptive
implementation of Tent-Pitcher [3] exploits the abilitythie SDG formulation to accommodate nonconforming meshes
in carrying out the adaptation while maintaining the pateise causal property.

The adaptive SDG method has been implemented for lineatodiasamics in one and two spatial dimensions. The
example depicted in Fig. 2 illustrates the benefits of spmestdaptivity in a shock propagation problem. Shock logdin
is applied to an elastic rod, with a transmitting boundarythum left and a fixed boundary on the right. The smearing
of the shock bands in the nonadaptive solution indicatesemigal error. The strongly graded adaptive mesh resolves
the fine details of the shocks with no visible smearing. Rasig the refinement to the shock trajectories reduces the
computational expense relative to adaptive proceduresti@ned by a global time—step size.
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