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Summary In this paper the sides of the triangular plane elasticity p-element are allowed to be rational Beziér curves, and the geometry
is mapped by the blending function method. If typical hierarchic polynomial shape functions are used, the element is not complete.
We present how the element can be made complete by enriching the shape function space with rational functions corresponding to the
geometry mapping. A numerical example shows that the enriched element is more efficient than the one without enrichments.

INTRODUCTION

Roots of this research lie in the shape optimization, where the p-version of the finite element method has many advan-
tages over the h-version. If the element geometry is mapped by the blending function method, the boundary curves of the
structure can be the boundary curves of the elements, too. In this case the geometries of the structure and the finite ele-
ment model are exactly the same, which is desirable especially in the shape optimization. Shyy et al. [1] used parametric
polynomial curves as p-element sides and stated certain requirements that the element has to meet in order to be com-
plete. When Schramm and Pilkey [2] allowed element sides to be also rational curves, they discovered some numerical
inaccuracies. This gave rise to the current research, the aim of which was to improve the p-element in such a way that it,
even with rational parametric curves as sides, is complete and gives reliable results. In this paper we first recapitulate the
blending function method, then present the rational enrichment functions, and finally a numerical example shows how the
enriched element performs when compared to the one without enrichments.

MAPPING BY THE BLENDING FUNCTION METHOD

In the blending function method [3], the element geometry is controlled by parametric boundary curves. The element
geometry follows exactly the geometry of the boundary curves, and therefore the method is well suited for mapping of the
complicated geometries. The blending function method for triangular finite elements was presented by Szabd and Babuska
[4], and next we rewrite these mapping functions with slight notational modifications. Element sides are represented by
rational Beziér curves

R'(u) = (R (u), R} (u)) wel0,1]  i=1,2,3, 1)
which are directed so that an increasing parameter « corresponds movement anticlockwise around the element. Now, the
convention of the side curve directions allows us to define difference functions for side 1

Di(u) = R:(u) — (1 — u)z1 — uxs D;(u) = R}/(u) — (1 — )y — uye, 2

where z; and y; are the nodal coordinates. The difference functions for sides 2 and 3 are analogous to those in equation (2).
We use common triangular coordinates L, Lo and L3 to define the three blending functions
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In the blending function method global coordinates are given by equations
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where auxiliary variables are
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RATIONAL ENRICHMENT FUNCTIONS

In order for the element be complete, the element shape functions must be able to represent the element geometry. If
the element has a rational side, clearly the polynomial shape functions can not represent the geometry. However, we can
enrich the shape function space with special rational shape functions, corresponding to the geometry mapping, which
make the element complete. Consider again for example the side 1, which we assume to be rational. From the mapping
equation (4) the products of the blending and the difference functions vanish on sides 2 and 3, and so they can be used as
the side shape functions of side 1. Furthermore, these products are the base of the enrichment side shape functions

Vi =¢'B'Dy(&) Ny =c'B'Dy(&). (6)



The factor ¢! scales the values of the enrichment functions to fit for the values of the other shape functions. This prevents
numerical problems, since the difference function values may vary largely depending on the element size in the global
xy coordinate system. The shape function space always includes the triangular coordinates L1, Lo and L3 (they are the
nodal shape functions), and when enriched with the functions (6), it clearly is able to represent the geometry given by the
mapping (4). A drawback of the enrichments is that they are different for each rational element side of the FE-model.

A numerical example

We consider a plane stress problem, where the modulus of elasticity is £ = 200 GPa, Poisson’s ratio v = 0.3, and the
sheet thickness ¢ = 10 mm. The structure is like a cantilever beam with three holes (see Figure 1), supported from the
left end and subject to a stress distribution varying linearly from —30 to 30 MPa at the right end. Each hole is modelled
with four second degree rational Beziér curves, each of which has a control polygon with three control points and weights
{1,8,1}. Due to the high weight of the middle control point, the curves form almost square holes. The mesh consists
of 32 elements, 20 of which are straight sided. The rest 12 elements around the holes each have one very curved and
rational side. The mesh is fixed, the curved sides are either enriched or not, and the polynomial degree p of the elements is
uniformly increased from 1 to 10. The “exact” results for the problem are from an FE-model with the number of degrees
of freedom N > 259000. The effect of the enrichments on the performance of p-extensions is shown in Figure 2, where
various relative errors are plotted against the v/N . Graphs of the true relative error in energy norm with a) normal and b)
enriched elements clearly show the benefits of the enrichments; the error is notably smaller and the rate of convergence
at lower values of p is faster. A posteriori estimates of the exact strain energy were computed from three consecutive
FE-solutions with increasing p, and the relative errors of these estimates with ¢) normal and d) enriched elements are also
shown in Figure 2, where we see again that the enriched elements give more accurate results.
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Figure 1. The plane structure (black), its support and loading Figure 2. Relative error in energy norm with a) normal
(blue), the 32 element mesh (red), and an example of a control and b) enriched elements. Relative error in estimate of ex-
polygon (green). act strain energy with ¢) normal and d) enriched elements.
CONCLUSIONS

When combined, the p-version of the finite element method, rational Beziér curves as element sides, and the blending
function method, form an analysis tool suitable for the shape optimization. If the elements are enriched with the rational
shape functions as shown in this paper, they will be complete. The numerical example indicates that the enriched element
is more efficient and gives more reliable results than the element with no enrichment. A future work might consist of a
generalization of the current work for other element types.
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