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Summary The method of Multi-Scale Boundary Conditions is applied to simulations of carbon nanostructures: graphite sheets and 
diamond. It allows simulation of a deformable boundary, thus reducing the size of computational domain and, consequently, the cost 
of computations. This approach is tested on model problems and results are in good agreement with the benchmark full domain 
solutions. The method can be useful for simulations of real-life experiments on nanoindentation of diamond and layered graphite. 

 
INTRODUCTION 

 
Atomistic simulation methods, such as molecular dynamics and molecular mechanics, are very important and find 
application in many areas of research providing information about processes happening on microscale level. However 
applicability and effectiveness of these methods hinge upon ability to fulfil very large scale computations. That makes 
these methods restricted to solving systems, which are too small even for nano scale problems. Solvable systems are of 
several orders of magnitude smaller than scales of real-life nanomechanical experiments. This situation is resolved with 
the usage of the so-called multiscale methods, when atomistic simulations are used only for a reduced domain (fine 
scale), and continuum finite element or meshless methods are used for the rest of the domain (coarse scale)[1]. Method 
of Multi-Scale Boundary Conditions (MSBCs) makes it possible to eliminate the coarse scale dimensions of freedom 
and simulate only the fine scale by imitating the so-called deformable boundary, when the boundary of a reduced 
domain behaves as if it were a part of a full domain. 

 
MATHEMATICAL FORMULATION 

 
The main idea of the method is based on Fourier analysis of regular atomic lattice structures [2]. For a periodic crystal 
lattice it is possible to derive displacements of the layer of atoms which is next to the fine scale domain (we denote it as 
n=1 layer) in terms of the neighboring boundary layer of the fine scale (layer n=0) and the last (boundary) layer of the 
full domain. We denote the last layer of the full domain as n=a, where a is the coarse scale parameter. In general form, 
the MSBCs can be written as  u1 = ΘΘΘΘ(u0) + ΞΞΞΞ(ua), where specific forms of operators ΘΘΘΘ and ΞΞΞΞ depend on the geometry of 
a crystal lattice, interatomic forces between its atoms, and a value of the coarse scale parameter. In case when the 
boundary of the full domain is fixed, so that displacements of atomic layer n=a are zero, we have left only with the first 
part of this equation. In a more extended form it can be written as: 
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where index m is used for numbering of atoms in the layer n (here n=0,1,a) and mc is a truncation parameter.  Typical 
shape of components of matrices ΘΘΘΘm, called the kernel matrices, is given below at figure 1. 
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Figure 1. 

 
It is important that the components of the kernel matrices ΘΘΘΘm decay fast with the growth of |m|. This allows using a small 
value of the truncation parameter mc in the above equation. Also, we mention that the assumptions of regular crystal 
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lattice and linear deformations, which were used for MSBCs derivation, have to hold only in a small vicinity of the 
deformable boundary, where the MSBCs are applied. At the same time, large deformations (including plasticity) are 
allowed inside the reduced domain and far enough from the deformable boundaries.  
 

SIMULATION RESULTS 
 
We consider the following model problem (see Figure 2): a rectangular sheet of graphite is fixed at all four sides, and 
initial displacements are applied in several steps to one of the atoms in the middle of the domain (the loaded atom is 
circled at the figure) in a direction perpendicular to the plane of the sheet. Here, we apply the MSBCs at two sides – left 
and right. Value of the coarse scale parameter for both deformable boundaries is a=6.  The whole full domain is shown 
at Figure 2. Filled circles – are atoms belonging to reduced domain (fine scale) and void circles – atoms of coarse scale 
domain, which are excluded from molecular mechanics calculations. 
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Figure 2.     Figure 3. 

 
Results of the computations are presented at Figure 3, where vertical displacements of atoms located along the 
horizontal middle line are plotted. The circles represent the exact solution for the full domain, which was obtained by 
regular molecular mechanics simulations. The crosses represent the approximate solution obtained for the reduced 
domain with the MSBCs applied. Similar results were obtained for a hexagonal domain, where all six boundaries were 
modeled using the MSBCs. We used hexagonal shape for reduced domain, because, in this case, all the boundaries 
correspond to an identical crystallographic orientation; that allows using the same kernel matrices as for the rectangular 
domain. This method was also applied to nanoindentation of diamond. In that case we obtain the kernel matrices for a 
slab-like boundary layer of atoms. Their behavior is similar to that shown at Figure 1.  Application of the method to 
three-dimensional atomic lattice structures, such as diamond, is tractable, as soon as boundaries of the reduced domain 
are drawn along a limited number of crystallographic planes. 
 

CONCLUSIONS 
 
The method of Multi-Scale Boundary Conditions helps to overcome the limitations of atomistic simulations, regarding 
the size of a computational domain.  By using sufficiently large values of the coarse scale parameter a it may allow 
simulations of real-life experiments. Current efforts are being made to apply this method to simulation of experimental 
results on nanoindentation of diamond and layered graphite presented in [3].  
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