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Summary The present contribution is concerned with the computational modelling of cohesive cracks, whereby the discontinuity is not
limited to interelement boundaries, but is allowed to propagate freely through the elements. Inelastic material behaviour is described
by discrete constitutive models, formulated in terms of tractions and displacements at the surface. Details on the implementation and
numerical examples are given.

INTRODUCTION

The modelling of propagating discontinuities was recently considered by several authors, following different approaches.
As an approved method, most similar to the present one, we mention the partition of unity method, which was introduced
in [1] and [2] and was applied for the modelling of cohesive cracks, for example, in [3]. In the present work we will follow
the approach recently suggested in [4]. Thereby neither the jump nor the strain jump is an explicit variable, but it is only
worked with polynomial approximations and displacement degrees of freedom. In the next section the governing equations
and the weak formulation are recapitulated, afterwards the idea of constructing elements with internal discontinuities is
highlighted. Then some details about the applied discrete constitutive law and the implementation are given and the
performance of the method is pointed out by means of numerical examples.

WEAK FORMULATION

Let Ω denote the configuration occupied by an initially linear elastic body. The boundary ∂Ω with the outward normal
vector ne is subdivided in ∂Ω = ΓN ∪ΓD with ΓN ∩ΓD = ∅, where either Neumann or Dirichlet boundary conditions
are prescribed. Furthermore Ω exhibits a smooth internal boundary ΓI , which divides Ω into the parts Ω1 and Ω2. The
unit normal vector n, associated with ΓI , points from Ω2 to Ω1. The jump in the displacement field u along ΓI is defined
by [[u]] = u1 − u2. The equilibrium equation and boundary conditions read:

−∇ · σ = b in Ω, u = ū on ΓD, σ · ne = t̄ on ΓN , σ · n = t([[u]]) on ΓI , (1)

whereby t̄ and ū are the prescribed tractions and the prescribed displacements, σ is the Cauchy stress and b is the
body force. For the considered geometrically linear formulation the symmetric strain tensor ε is given by the kinematic
equation ε = 1

2
[∇u + ∇t

u]. The constitutive relation in the bulk is given by σ = D : ε, whereby D is the fourth
order constitutive tensor. The description of the inelastic behaviour of the material is completely covered by the discrete
constitutive model applied at the internal boundary ΓI . The weak formulation, which is obtained by multiplication of (1)
with a test function δu and integrating by parts, possesses an additional contribution due to the tractions t along ΓI

∫

Ω1∪Ω2

δε : σ(u) dV +

∫

ΓI

[[δu]] · t([[u]]) dA =

∫

Ω1∪Ω2

δu · b dV +

∫

ΓN

δu · t̄ dA. (2)

Thereby the traction vector t depends on the discrete constitutive law in terms of the displacement jump.

DISCRETIZATION

In this section details about the discretization are given. The weak form (2) will be solved, using finite elements which
allow for a discontinuity intersecting the elements, following the approach suggested in [4].
To construct an element E with an internal discontinuity, we consider that E is divided by ΓI into E1 := Ω1 ∩ E and
E2 := Ω2 ∩ E. The displacement field u will be continuous on each part, but discontinuous over ΓI , therefore u can be
represented by

u =

{

u1 in E1

u2 in E2

(3)

To approximate the function u1 on E1 one needs the usual number of degrees of freedom, depending on the desired
polynomial degree. Even though u1 is only defined on E1, it can be represented by its nodal values at the existing nodes
of the element E and the standard basis functions. The same applies for function u2, which has, due to the discontinuous
characteristic of u, no relation to u1. That means that for an element intersected by a discontinuity two independent
copies of the standard basis functions N are used, whereby one set is put to zero on one side of the discontinuity, while it
takes its usual values on the opposite side, and vice versa:

N
j
1

=

{

N j in E1

0 in E2,
and N

j
2

=

{

0 in E1

N j in E2.
(4)

It is recognizable that this set of basis functions with an internal discontinuity can be easily constructed for any standard
finite element in 2D or 3D. The additional degrees of freedom are introduced at the existing nodes and the points of
intersection between element edges and the interface as well as the geometry of the element parts are only needed for the
evaluation of the weak form.



DISCRETE CONSTITUTIVE MODEL

In the proposed method discrete constitutive models are applied to model the inelastic material behaviour. The discrete
models are formulated in terms of tractions and displacements and they are applicable at the internal surface. In the
following a discrete damage-type model for quasi-brittle materials is introduced, with the tensile stress ft and the fracture
energy Gf being the main parameters. An exponential softening in normal direction and a constant shear stiffness in
tangential direction is assumed. The traction vector t is determined by

tn = ft exp

(

−
ft

Gf

[[un]]

)

, tm = d [[um]] and t = tn n + tm m, (5)

whereby d is the shear stiffness and m is the tangential vector associated to ΓI . This discrete constitutive model is
chosen because of its simplicity with respect to the implementation. Due to the constant shear stiffness, which is a valid
assumption for mode 1 failure only, the tangent stiffness matrix preserves its symmetry. Nevertheless the introduction of
a more general constitutive model is straightforward.

IMPLEMENTATION AND NUMERICAL EXAMPLE

To describe a propagating discontinuity we need to propose a failure criterion, a method to determine the alignment of the
discontinuity and an adequate integration scheme for the intersected elements. During the calculation the principle stresses
in the element ahead of the discontinuity tip are monitored. If the stresses exceed the tensile strength, the discontinuity is
introduced as a straight line through the element and is enforced to be geometrically continuous. To determine the right
direction of the extension of the discontinuity, non-local stresses are calculated. The non-local stress tensor is computed
as the weighted average of the stresses at the gausspoints within an interaction radius around the tip. The discontinuity is
extended in the direction perpendicular to the non-local principle stress.
In the elements, intersected by a discontinuity, the same basis functions as in the ordinary elements are used. But since
the geometry of the element parts varies, the element fragments are triangulated into sub-domains and standard Gauss
quadrature is applied. Additional integration point are inserted along the internal boundary ΓI , to integrate the contribu-
tions depending on the traction vector.
To show that the proposed method allows for the propagation of a discontinuity, independent of the mesh structure, two
numerical examples are given. We consider a three-point bending test, whereby a simply supported beam is loaded by an
imposed displacement at the center of the top edge. The analysis is performed with linear, three-noded triangles, a full
Newton-Raphson solution procedure is used and linear elastic behaviour of the continuum is assumed. Figure (1) shows
the propagation of a discontinuity introduced at the center of the beam and figure (2) pictures a discontinuity which is
introduced excentric. Both the simpler case of the straight crack and the curved crack are calculated independently of the
mesh structure.

Figure 1: Propagation of centered crack Figure 2: Propagation of excentered crack

CONCLUSIONS

We introduced a finite element method for the modelling of cohesive cracks. The characteristic feature of the method is
the construction of the elements with an internal discontinuity, which is independent of the element type and uses only the
standard basis functions. The method was applied to model cohesive cracks, making use of a discrete constitutive law. The
presented numerical examples point out that the method allows for simulating propagating discontinuities independent of
the mesh structure.
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