
XXI ICTAM, 15–21 August 2004, Warsaw, Poland

MESH OPTIMIZATION FOR THE QUASICONTINUUM METHOD: A GENERALIZATION OF
VALE

J. Knap, J. Marian and M. Ortiz
Division of Engineering and Applied Science

California Institute of Technology
Pasadena, CA 91125

Summary The current formulation of the quasicontinuum (QC) method relies on a static triangulation of the reference crystal con-
figuration. This computational mesh needs to encompass a wide range of spatial resolutions, from fully atomistic at defect cores, to
continuum-like in defect-free regions. Moreover, it must continuously adapt to the structure of the deformation field, so as to return
the least possible potential energy for a fixed number of nodes. In the implementations of the QC method to date, the mesh adaption
procedure has been based on empirical indicators. We present a variational adaption Lagrangian-Eulerian (VALE) method for the QC
method. In this approach, the computational mesh is factored directly into the description of the energetics of the crystal. Therefore,
the energy minimizer determines not only the equilibrium configuration of the crystal, but also the optimal configuration of the com-
putational mesh. We apply the VALE-QC method to the investigation of a wide array of problems, from nanoindentation to crack
tips.

PROBLEM FORMULATION

We consider a set ofN atoms occupying a subset of simpled-dimensional Bravais lattice spanned by lattice vectors
ai, i = 1, . . . , d. The coordinates of atoms in the reference configuration of the crystal are:

X(l) =
d∑
i=1

liai, l ∈ L ⊂ Zd, (1)

l denotes the lattice coordinates andZ is the set of integer numbers. The corresponding atomic coordinates in the current
configuration may be conveniently collected in an arrayx = {x(l), l ∈ L} ∈ X. The linear spaceX ≡ RNd may be
referred to as the ’configuration’ space of the crystal.
The energy of the crystal is assumed to expressible as a function of the atomic coordinates, i.e.E(x). Moreover, any
applied loads are considered conservative and to derive from an external potentialΦext(x). Therefore, the total potential
energy of the crystal is:

Φ(x) = E(x) + Φext(x). (2)

The stable equilibrium configurations of interest are the minimizers ofΦ(x) over the spaceX, i. e., the solutions of the
variational problem

min
x∈X

Φ(x). (3)

A NEW FORM OF QC REDUCTION

The quasicontinuum theory strives to replace Eq. (3) with a reduced problem of finding the total potential energy mini-
mizers over a subspaceXh of X. Within the framework of the ’classical’ quasicontinuum [2, 3, 1], a set of atoms, also
referred to as ’representative atoms’, is introduced to form a basis ofXh. Here instead, we constructXh by interpo-
lation from anarbitrary setTh of Nh � N points, or nodes, not necessarily coincident with atomic sites. Thus, let
Qh = {Qh(ih), ih ∈ Th} denote an array of nodal coordinates in the reference configuration of the crystal, or referential
nodal coordinates. Additionally, letTh be a triangulation ofTh and suppose that the crystal latticeL is contained within
the polytope ofTh. The triangulationTh supports a collection of shape functions,ϕh(l|ih), ih ∈ Th. The positions of all
atoms inL can then be determined by interpolation of the coordinates of all nodes in the setTh, namely,

xh(l) =
∑
ih∈Th

ϕh(l|ih)qh(ih), (4)

whereqh = {qh(ih), ih ∈ Th} is an array containing the nodal coordinates in the current configuration of the crystal, or
spatial nodal coordinates, i. e., an element of a linear spaceXh of dimensionNhd (c.f. Knap and Ortiz [1]).

REDUCED PROBLEM

Tadmoret al. [2, 3] define the reduced counterpart of (3) as

min
qh∈Xh

Φ(qh). (5)



Evidently, the energy minimizers of the reduced problem implicitly depend on the choice of the triangulationTh through
subspaceXh. As noted by Thoutireddy and Ortiz [4], theoptimal triangulationis that which delivers the least minimum
potential energy. This leads to a reduced problem of the form

min
qh,Qh

Φ(qh,Qh). (6)

in which the energy is minimized with respect toboth spatial and referential nodal coordinates. The stationarity of the
total potential energy yields the reduced equilibrium equations

fh(ih) =
∑
l∈L

f(l|xh)ϕh(l|ih) = 0, (7)

F h(ih) =
∑
l∈L

f(l|xh)
∑
jh∈Th

∂ϕh(l|jh)
∂Qh(ih)

qh(jh) = 0. (8)

Here,
f(x) = Φ,x(x) (9)

are the forces corresponding tox andf(l|x) is the value off(x) at sitel. The system of equations (7) imposes the
mechanical equilibrium of the crystal, whereas the system (8) imposes the configurational equilibrium of the nodes.
As noted by Tadmoret al. [2, 3], the practicality of the method requires the application of lattice summations rules in
order to circumvent the calculation of the full atomistic force arrayf . Following Knap and Ortiz [1], we employ cluster
summation rules, albeit based on a slightly modified definition of the cluster. Specifically, the cluster of lattice sites
located within a sphere of radiusr(ih) centered on the nodeih is defined asC(ih) = {l : |X(l)−Qh(ih)| ≤ r(ih)}. The
application of these summation rules to the reduced equilibrium equations gives

fh(ih) ≈
∑
i′h∈Th

nh(i′h)

 ∑
l∈C(i′h)

f(l|xh)ϕh(l|ih)

 = 0, (10)

F h(ih) ≈
∑
i′h∈Th

nh(i′h)

 ∑
l∈C(i′h)

f(l|xh)
∑
jh∈Th

∂ϕh(l|jh)
∂Qh(ih)

qh(jh)

 = 0. (11)

wheren(ih), ih ∈ Th are the cluster weights, computed, as before, by requiring that the summation rules be exact for all
shape functions.

CONCLUSIONS

We have developed a new formulation of the quasicontinuum method that generalizes the original description of Tadmor
et al. [2]. The method now incorporates a variational technique [4] that leads to a natural coupling of mechanical and
configurational force systems. In this manner, any arbitrariness associated with the initial choice of the reference con-
figuration is removed, and the equilibrium configurations of interest are calculated on an optimal reference mesh. The
new formulation results in enhanced computational efficiency and effectively removesad hocelements from previous
implementations of the QC method. Calculations concerned with nano-indentation, straight dislocation cores and crack
tips are presented which illustrate the performance and versatility of the method.
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