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Extended Summary

Variational multiscale concepts for Large Eddy Simulation (LES) were introduced in Hughes et al. [7].
The basic idea was to use variational projections in place of the traditional filtered equations and to focus

modeling on fine-scale equations rather than coarse-scale equations. Avoidance of filters eliminates many
difficulties associated with the traditional approach, namely, inhomogeneous non-commutative filters

necessary for wall-bounded flows, use of complex filtered quantities in compressible flows, the closure

problem, etc. In addition, modeling confined to the fine-scale equations retains numerical consistency in
the coarse-scale equations and thus permits full rate-of-convergence of the underlying numerical method

in contrast with the usual approach which limits convergence rate due to artificial viscosity effects in the

fully resolved scales (O(h4/3) in the case of Smagorinsky-type models). Initial versions of the variational
mulsticale method focused on dividing resolved scales into coarse and fine designations, and eddy

viscosities, inspired by traditional models, were only included in the fine scale equations and acted only on
the fine scales. This version was studied in [8, 9, 16] and found to work very well on homogeneous isotropic

flows and fully-developed equilibrium and non-equilibrium turbulent channel flows. Static eddy viscosity

models were employed in these studies but superior results were subsequently obtained through the use
of dynamic models, as reported in Holmen et al. [4] and Hughes et al. [11]. Good numerical results were

obtained with the static approach by other of investigators, namely, Collis [2], Jeanmart and Winckelmans
[14] and Ramakrishnan and Collis [18, 19, 20, 21]. Particular mention should be made of the work of Farhat

and Koobus [3], and Koobus and Farhat [15], who have implemented this procedure in an unstructured

mesh, finite volume, compressible flow code, and applied it very successfully to a number of complex test
cases and industrial flows. We believe that this initial version of the variational multiscale concept has

already demonstrated its viability and practical utility and is, at the very least, competitive with traditional
LES turbulence modeling approaches.

Nevertheless, there is still significant room for improvement. The use of traditional eddy viscosities to
represent fine-scale dissipation is an inefficient mechanism. Employing an eddy viscosity in the resolved

fine scales to represent turbulent dissipation introduces a consistency error which results in the resolved

fine scales being “sacrificed” to retain full consistency in the coarse scales. (In our opinion, this is still better
than the traditional approach in which consistency in all resolved scales is sacrificed to represent turbulent

dissipation.) This procedure is felt to be “inefficient” because approximately 7/8 of the resolved scales are
typically ascribed to the fine scales. Another shortcoming noted for the initial version of the variational

multiscale method is too small an energy transfer to unresolved modes when the discretization is very

coarse (see, e.g., Hughes et al. [11]). This phenomenon is also noted for some traditional models, such
as the dynamic Smagorinsky model [11], but seems to be somewhat more pronounced for the multiscale

version of the dynamic model. The objectives of recent multiscale work have been to capture all scales
consistently and to avoid use of eddy viscosities altogether. This holds the promise of much more accurate
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and efficient LES procedures. In this work, we describe a new variational multiscale formulation which

makes considerable progress toward these goals. In what follows, all resolved scales are viewed as coarse
scales, which obviates the issue of inefficiency ab initio.

We begin by taking the view that the decomposition into coarse and fine scales is exact. For example,
in the spectral case, the coarse-scale space consists of all Fourier modes beneath some cut-off wave number

and the fine-scale space consists of all remaining Fourier modes. Consequently, the coarse-scale space has
finite dimension whereas the fine-scale space is infinite dimensional. The derivation of the coarse- and

fine-scale equations proceeds, first, by substituting the split of the exact solution into coarse and fine scales

into the Navier-Stokes equations, then, second, by projecting this equation into the coarse- and fine-scale
subspaces. The projection into coarse scales is a finite dimensional system for the coarse-scale component

of the solution, which depends parametrically on the fine-scale component. In the spectral case, in addition
to the usual terms involving the coarse-scale component, only the cross-stress and Reynolds-stress terms

involve the fine-scale component. In the case of non-orthogonal bases, even the linear terms give rise to

coupling between coarse and fine scales. The coarse-scale component plays an analogous role to the filtered
field in the classical approach, but has the advantage of avoiding all problems associated with homogeneity,

commutativity, walls, compressibility, etc. The projection into fine scales is an infinite-dimensional system
for the fine-scale component of the solution which depends parametrically on the coarse-scale component.

We also assume the cut-off wave number is sufficiently large that the philosophy of LES is appropriate.

For example, if there is a well-defined inertial sub-range, then we assume the cut-off wave number resides
somewhere within it. This assumption enables us to further assume that the energy content in the fine scales

is small compared with the coarse scales. This turns out to be crucial in our efforts to analytically represent
the solution of the fine-scale equations. The strategy is to obtain approximate analytical expressions for

the fine scales then substitute them into the coarse-scale equations which are, in turn, solved numerically.

If the scale decomposition is performed in space and time, the only approximation in the procedure is
the representation of the fine-scale solution. To provide a framework for the fine-scale approximation,

we assume an infinite perturbation series expansion to treat the fine-scale nonlinear term in the fine-scale
equation. By virtue of the smallness of the fine scales, this expansion is expected to converge rapidly

under the circumstances described in many cases of practical interest. The remaining part of the fine-scale

Navier-Stokes system is the linearized operator which is formally inverted through the use of a Green’s
function. The combination of a perturbation series and Green’s function provides an exact formal solution

of the fine-scale Navier-Stokes equations. The driving force in these equations is the Navier-Stokes system

residual computed from the coarse scales. This expresses the intuitively obvious fact that if the coarse
scales constitute a good approximation to the solution of the problem, the coarse-scale residual will be

small and the resulting fine-scale solution will be small as well. This is the case we have in mind and
it provides a rational basis for assuming the perturbation series converges rapidly. Note that one cannot

use such an argument on the original problem because in this case the perturbation series would almost

definitely fail to converge. (If we could have used this argument, we would have solved the Navier-Stokes
equations analytically! Unfortunately, it does not work.) The formal solution of the fine-scale equations

suggests various approximations may be employed in practical problem solving. We are tempted to use
the word “modeling” because approximate analytical representations of the fine scales constitute the only

approximation and hence may be thought of as the “modeling” component of the present approach but

we want to emphasize that it is very different from classical modeling ideas which are dominated by
the addition of ad hoc eddy viscosities. We will present numerical results that demonstrate these eddy-

viscosity terms are unnecessary in the present circumstances. There are two aspects to the approximation
of the fine scales: 1) Approximation of the Green’s function for the linearized Navier-Stokes system; and 2)

approximation of the nonlinearities represented by the perturbation series. The first and obvious thought

for the latter aspect, nonlinearity, is to simply truncate the perturbation series. This idea is investigated, as
well as another promising idea, in conjunction with some simple approximations of the Green’s function.

It turns out there is considerable experience in local scaling approximations of the Green’s function based
on the theory of stabilized methods [5, 6, 10]. The Green’s function is typically approximated by locally

defined algebraic operators (i.e., the “τ’s” of stabilized methods) multiplied by local values of the coarse-

scale residual. With this approximation of the solution of the linearized operator, nonlinearities can be
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easily accounted for in perturbation series fashion. Another approach that accounts for nonlinearities in

the fine-scale equations is to introduce a nonlinear algebraic scaling of the Navier-Stokes equations. The
resulting local nonlinear algebraic system can be analytically solved. It possesses the reasonable analytical

property that if the coarse-scale residual is small, it converges to the linearized solution.

These newer variational multiscale ideas, and the older variants, were implemented in a finite volume

code that has enjoyed widespread use in turbulence simulations (see Pierce and Moin [17]). Following
along the lines of Jacobs and Durbin [12, 13], who performed DNS investigations of bypass transition of a

boundary layer, we examine this difficult problem from the point of view of the variational multiscale and

classical LES. Our aim was to solve this problem as an LES and demonstrate the efficacy of the new ideas
in the process.

In our work we endeavor to show the effectiveness, or deficiencies, of LES approaches by studying

them over a range of resolutions, from coarse to fine. In our studies of bypass transition we went as far as

DNS in the fine-scale end of the spectrum, and 1/8 DNS resolution in each spatial direction. The coarsest
LES mesh then involves about 1/512 the number of equations as the DNS mesh and approximately 1/4,096

of the computational effort. We found, independent of the LES method, that in order to accurately simulate
bypass transition, the decay of input homogeneous, isotropic, free-stream turbulence must be the same

for all meshes. A procedure was developed in which we were able to simulate consistent energy decay

with distance of the free-stream turbulence across the range of meshes considered. We then compared the
methods to represent bypass transition. We found that the “1/8 DNS mesh” was incapable of representing

either the laminar region of the boundary layer or the free-stream turbulence evolution due to too few points

in the wall normal direction. We found that all methods gave essentially the same solution at the DNS level,
whereas only the new variational multiscale formulation was able to attain relatively mesh independent

solutions without parameter adjustment for the 1/4, 1/2 and full DNS mesh cases. The 1/4 DNS involves
1/64 the number of mesh points as the DNS case and 1/512 the computational effort. Comparison is made

with classical LES procedures, such as the dynamic Smagorinsky model, which tends in this instance to

exhibit significant sensitivity to the filter-width ratio, and previous versions of the variational multiscale
method in which a fine-scale dynamic Smagorinsky model is employed. Comparison is also made with

some classical stabilized methods, such as SUPG (see Brooks and Hughes [1]). We conclude that the newest
method is superior to all previous methods and offers a promising new path for turbulence research in

LES. However, it obviously needs testing on a wider variety of flows and implementation in a variety of

numerical frameworks, such as, spectral, finite difference and finite element, before definitive conclusions
can be drawn. In our experience, the particular numerical discretization method has an enormous impact

on the results, and its influence is often underestimated by practitioners evaluating models.

References

[1] A. N. Brooks and T. J. R. Hughes. Streamline upwind / Petrov-Galerkin formulations for convection

dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer
Methods in Applied Mechanics and Engineering, 32:199–259, 1982.

[2] S. S. Collis. Multiscale methods for turbulence simulation and control. Technical Report Version 1.1,

Mechanical Engineering and Materials Science, Rice University, 2002. Available at
http://www.mems.rice.edu/∼collis/papers/vki2002_notes.pdf.

[3] C. Farhat and B. Koobus. Finite volume discretization on unstructured meshes of the multiscale

formulation of large eddy simulations. In Rammerstorfer F. G. Mang H. A. and Eberhardsteiner J.,

editors, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna University
of Technology, Austria, July 7-12 2002. Fifth World Congress on Computational Mechanics.

[4] J. Holmen, T. J. R. Hughes, A. A. Oberai, and G. N. Wells. Sensitivity of the scale partition for

variational multiscale LES of channel flow. Physics of Fluids, 16(3):824–827, 2004.

3



[5] T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation,

subgrid scale models, bubbles, and the origins of stabilized methods. Computer Methods in Applied
Mechanics and Engineering, 127:387–401, 1995.

[6] T. J. R. Hughes, G. Feijóo., L. Mazzei, and J. B. Quincy. The variational multiscale method–A paradigm
for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166:3–24, 1998.

[7] T. J. R. Hughes, L. Mazzei, and K. E. Jansen. Large eddy simulation and the variational multiscale

method. Computing and Visualization in Science, 3:47–59, 2000.

[8] T. J. R. Hughes, L. Mazzei, A. A. Oberai, and A. A. Wray. The multiscale formulation of large eddy

simulation: Decay of homogeneous isotropic turbulence. Physics of Fluids, 13(2):505–512, 2001.

[9] T. J. R. Hughes, A. A. Oberai, and L. Mazzei. Large eddy simulation of turbulent channel flows by the

variational multiscale method. Physics of Fluids, 13(6):1784–1799, 2001.

[10] T. J. R. Hughes, G. Scovazzi, and L. P. Franca. Multiscale and stabilized methods. In E. Stein,
R. de Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics. John Wiley & Sons,

Ltd., 2004.

[11] T. J. R. Hughes, G. N. Wells, and A. A. Wray. Energy transfers and spectral eddy viscosity of
homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models

over a range of disretizations. Technical Report 04-20, Institute for Computational Engineering and
Sciences, University of Texas at Austin, 2004. Available at

http://www.ticam.utexas.edu/reports/2004/0420.pdf.

[12] R. G. Jacobs and P. A. Durbin. Bypass transition phenomena studied by computer simulation.
Technical Report TF-77, Flow Physics and Computation Division, Department of Mechanical

Engineering, Stanford University, 2000.

[13] R. G. Jacobs and P. A. Durbin. Simulations of bypass transition. Journal of Fluid Mechanics, 428:185–212,

2001.

[14] H. Jeanmart and G. S. Winckelmans. Comparison of recent dynamic subgrid-scale models in the case
of the turbulent channel flow. In Proceedings Summer Program 2002, pages 105–116, Stanford, CA, 2002.

Center for Turbulence Research, Stanford University & NASA Ames.

[15] B. Koobus and C. Farhat. A variational multiscale method for the large eddy simulation of

compressible turbulent flows on unstructured meshes–application to vortex shedding. Computer

Methods in Applied Mechanics and Engineering, 193(15–16):1367–1383, 2004.

[16] A. A. Oberai and T. J. R. Hughes. The variational multiscale formulation of LES: Channel flow at

Re = 590. In 40th AIAA Ann. Mtg., AIAA 2002-1056, Reno, NV, Jan. 2002.

[17] C. D. Pierce and P. Moin. Progress-variable approach for large eddy simulation of turbulent

combustion. Technical Report TF-80, Flow Physics and Computation Division, Department of

Mechanical Engineering, Stanford University, 2001.
Available at http://ctr.stanford.edu/Pierce/thesis.pdf.

[18] S. Ramakrishnan and S. S. Collis. Variational multiscale modeling for turbulence control. In AIAA 1st

Flow Control Conference, AIAA 2002-3280, St. Louis, MO, June 2002.

[19] S. Ramakrishnan and S. S. Collis. Multiscale modeling for turbulence simulation in complex

geometries. In 40th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-0241, Reno, NV, Jan. 2004.

[20] S. Ramakrishnan and S. S. Collis. Partition selection in multiscale turbulence modeling. Preprint, 2004.

[21] S. Ramakrishnan and S. S. Collis. Turbulence control simulation using the variational multiscale

method. AIAA Journal, 42(4):745–753, 2004.

4


