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We consider a turbulent flow that rotates sufficiently fast so that the Rossby number is small 
(0.1), that is, the Coriolis force dominates inertial effects.  Further, the dissipation, which is 
due mainly to Ekman friction in the boundary layers, is small. Hence the flow is essentially 2-
dimensional (2D), like flows in the atmosphere and oceans on large spatial scales.   Such a 
flow is different from the non-rotating quasi-2D turbulent flows studied in soap films [1] and 
thin electrolyte layers [2], and different from strictly 2D turbulent flows, which do not exist in 
nature but have been studied theoretically and numerically. Our study concerns the statistical 
properties of the low Rossby number flow: the probability distribution function (PDF) 
measured for the vorticity ω (the component parallel to the rotation axis), and the PDF of 
increments of a component of the velocity, δv(x) = v(r+x)-v(r), where v lies along the line 
connecting r  and r+x [3,4].   
 
Our apparatus is an annular tank with inner diameter 21.6 cm and outer diameter 86.4 cm. 
The bottom slopes to mimic the earth’s beta effect: the depth increases from 17.1 cm at the 
inner radius to 20.3 cm at the outer radius.  Fluid is pumped into the tank through a ring of 
120 holes in the tank bottom at a radius of 18.9 cm, and out of the tank through a ring of 120 
holes at a radius of 35.1 cm.  The result of this radial forcing is a broad azimuthal counter-
rotating jet that is turbulent (Reynolds number 20000) [4].   Measurements of the azimuthal 
component of the velocity are made with hot film probes place midway between the inner and 
outer radii of the annulus, and these velocity time series measurements are complemented by 
Particle Image Velocity measurements of the entire 2D velocity field. 
 
The velocity measurements yield a PDF for the velocity increments that is non-Gaussian, but 
the functional form for P(δv) is the same for different distances x, as Fig. 1 illustrates.   A 
consequence of this self-similar behavior is that the exponents ζ(p) for the structure function, 
 

Sp(x) = <( δv)p> ~ x ζ(p),  
 
should be linear in the order p.  We have confirmed this linearity in direct determinations of 
the scaling of Sp for orders up to p = 10 [4].   
 
Equilibrium statistical mechanics has long been used to gain insight into turbulence (e.g., [5-
6]).   The analyses are usually based on Boltzmann-Gibbs statistical mechanics, which 
describes weak interactions and does not capture the long range interactions present in low 
Rossby number flows where there are large coherent jets and vortices.  We explore the 
applicability of a generalization of statistical mechanics proposed by Tsallis, known as 
nonextensive statistical mechanics [7].  Energy and enstrophy are both approximately 
conserved in weakly dissipative low Rossby number flows.  Assuming that these quantities 
are conserved in our flow, we derive a form for the PDF of the vorticity by maximizing a 
nonextensive entropy function.  In order to apply the formalism to our experiment, we had to 
reduce the number of boundary conditions, which was done by pumping fluid through a single 
ring with a semi-circle of 60 holes that were sources, and on the opposite side of this circle 
was a semi-circle of 60 sinks. The flow configuration is described in [8].  The resultant 
turbulent flow is turbulent for the pumping rate used [8].  We find that P(ω) for this flow, 
computed from our nonextensive analysis, is in good accord with the observations, as Fig. 2 
demonstrates.   
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Fig. 1. The velocity increment PDF is self-similar, i.e., the functional form of P(δv) (normalized 
by its maximum value) is independent of the distance between measurement points. Data for 
six distances x ranging from 1.1 to 17.3 cm are shown by different symbols (for comparison, 
the Kolmogorov dissipation length is 0.07 cm) [4].   The width of the PDF for each distance x 
is scaled by the corresponding rms value of δv.   (from [4]). 
 

 
 
Fig. 2.  Vorticity PDF on linear (left) and log (right) scales:  comparison of laboratory 
measurements (o) with predictions obtained from statistical theory. The prediction from 
nonextensive statistical mechanics agrees well with the observations, while the Gaussian 
curve given by Boltzmann-Gibbs statistical mechanics is far from the observations. (from [3]) 


